1M4A	13	71	3
1M4A	40	-	_

(Pages: 2)

Reg. No:	
Name:	

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester M.Sc Physics Degree Examination, April 2023 MPH4C12 – Atomic and Molecular Spectroscopy

(2019 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Section A

Answer all Questions. Each question carries a weightage of 1

- 1. Distinguish between Zeeman effect and Paschen back effect.
- 2. State and explain Hund's rule. Give an example.
- 3. The intensity of J=0 \rightarrow J=1 is not the most intense rotational line. Why?
- 4. What parameters one can get from a study of the vibration-rotation spectrum of a heteronuclear diatomic molecule? How are they estimated?
- 5. Comment on the statement 'Homonuclear diatomic molecules give no microwave or infrared spectra whereas they do give a rotational Raman spectrum'.
- 6. The rotation raman spectra of CH_3 Cl molecules shows an alternation in intensity. Why?
- 7. State and explain Franck-Condon principle.
- 8. What is screening constant? Explain the different contribution to screening constant of molecules. $8 \times 1 = 8$ weightage

Section B

Answer any 2 questions. Each question carries a weightage of 5

- Discuss the energy and spectra of a diatomic vibrating rotator as an unharmonic oscillator. Explain how different branches occur in spectra.
- With the help of a schematic diagram, describe the construction and working of a Raman spectrometer.

- 11. With the diagram, discuss the rotational fine structure of electronic-vibration spectra and explain band origin and band head. Will there be a band head at the band origin? Explain. From the fortrat parabola, find the position of band head.
- 12. Explain the principle of ESR. Explain the factors responsible for the hyperfine structure in ESR spectra. Explain the hyperfine component of ESR spectrum of a system having an unpaired electron interacting with (i) two equivalent protons (ii) two non-equivalent protons.

 $2 \times 5 = 10$ weightage

Section C

Answer any 4 question. Each question carries a weightage of 3

- 13. Determine the Zeeman components in Å unit, when a spectral line of wavelength 4500Å is subjected to a magnetic field of strength 0.3 Tesla. Mass of the electron is 9.1x10⁻³¹kg; c=3x10⁸m/s; charge of the electron is 1.6x10⁻¹⁹C.
- 14. Find the interaction energies between two sp (valence) electrons in LS coupling. Give the schematic representation.
- 15. The equilibrium vibration frequency of the iodine molecule is $215cm^{-1}$ and the anharmonicity constant $\chi_e=0.003$. What is the intensity of the hot band $\nu=0 \rightarrow \nu=2$ relative to that of the fundamental $\nu=0 \rightarrow \nu=1$, if the temperature is 300K?
- 16. The bond length of N_2 molecule is 1.097×10^{-10} m. What would be the positions of the first three rotational Raman lines of N_2 ? ¹⁴ $N=23.25 \times 10^{-27}$ kg.
- 17. The values of $\overline{\nu_e}$ and χ_e for ground and excited states of C_2 molecule are $\frac{1641.4\ cm^{-1}}{\nu_{00}}$, 7.11×10^{-3} and $1788.2\ cm^{-1}$, 9.19×10^{-3} respectively. If its states.
- 18. Calculate the difference in the energies of protons oriented with and against a magnetic field of strength 2T. What is the frequency of radiation that has this energy? $g_N=5.585$.
- 19. Calculate the recoil velocity of a Mossbauer nucleus of mass $9.4684 \times 10^{-26} \text{kg}$, when emitting a γ -ray of wavelength $8.57 \times 10^{-11} \text{m}$. What is the Doppler shift of the γ -ray frequency to an outside observer?

 $4 \times 3 = 12$ weightage

(Pages: 2)

Reg. No.		
Mama	•	•

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester M.Sc Physics Degree Examination, April 2023 MPH4E13 – Laser & Fibre Optics

(2019 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Section A (8 Short questions, each answerable within 7.5 minutes Answer ALL questions, each carries weightage 1)

- 1. Write down the Boltzmann's law of population at the energy level at thermal equilibrium. Explain the term involved.
- 2. How material dispersion effect fiber optic communication ?.
- 3. What are leaky modes in optical fibers?
- 4. Describe the advantages of cladding in optical fibres?
- 5. What are the applications of Holography?
- 6. What is 'V' parameter of an optical fibre?
- 7. What is the role of Q switching in a LASER?
- 8. Explain significance of the phase matching condition in second harmonic generation of light.

 $(8 \times 1 = 8 \text{ weightage})$

Section B

(4 Essay questions, each answerable within 30 minutes

(Answer ANY TWO questions, each carries weightage 5)

- Analyse the optical resonators using geometrical optics and hence obtain the condition to be satisfied for a stable resonator.
- 10. Analyse light propagation through optical fibres using Maxwell's equations.
- 11. Discuss various signal degradation mechanisms in optical fibre communication.
- 12. Explain following measurement techniques used in Optical Fibre Communications.
 - a) Optical time domain reflectometer (OTDR)
 - b) Reflection method and transmitted near field method to measure refractive index

 $(2 \times 5 = 10 \text{ weightage})$

Section C 7 Problem questions, each answerable within 15 minutes) (Answer any FOUR questions, each carries weightage 3)

- 13. Obtain the expression for threshold pump power of laser oscillations in a three level laser systems.
- 14. A step-index fibre has radius a=5 pm, core refractive index $n_1=1.45$, and fractional refractive-index change $\Delta=0.002$. Determine the shortest wavelength λ_c , for which the fiber is a single-mode waveguide
- 15. A fibre has 500 m length and is fed with an optical power of 10 μ W. The output power is found to be 7 μ W. Calculate the loss in dB/km.
- 16. A Laser produces 10mW beam of light at 632.8 nm. Find the number of photons emitted by the laser in each second.
- 17. Find the longitudinal mode spacing of a laser resonator of cavity length d=100 cm. Assume cavity is filled with a gas of refractive index 1.00037.
- 18. The areal density parameter (pR) of the combustion in inertial confinement of a Laser fusion is 0.3g/cm^2 . Find the factional burn up of the fuel.
- 19. Compare the properties of step index and graded index optical fibers using refractive index profile diagram. Also compare single mode and multimode optical fiber using 'V' parameter.

(4 x3 = 12 weightage)

(Pages: 2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester M.Sc Physics Degree Examination, April 2023 MPH4E20 – Microprocessors, Microcontrollers & Applications

(2019 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Section A

(Short answer type questions. Answer all questions. Each carry weightage 1)

- 1. Differentiate between CALL and RET instructions in 8085 microprocessor.
- 2. Explain I/O mapped I/O scheme of address space partition in 8085 microprocessor.
- 3. What are the different operating modes of Intel 8253 programmable counter/interval timer?
- 4. Describe DMA data transfer scheme.
- 5. Write a note on 7-segment LED display.
- 6. Differentiate between a general purpose microprocessor and microcontroller.
- 7. What is meant by assembler directives in microcontroller? Illustrate with an example.
- 8. Write a short note on C language data types commonly used for AVR microcontroller.

Total weightage $8 \times 1 = 8$

Section B (Essay type questions. Answer ANY TWO questions. Each carry weightage 5)

- 9. With the help of block diagram explain the internal architecture of 8085 microprocessor.
- 10. With the help of a diagram explain the function of Intel 8259 programmable interrupt controller. Explain the three internal registers of 8259.
- 11. Discuss the general purpose registers in the AVR. Explain the function of LDI, ADD and SUB instructions of AVR with respect to the general purpose registers.
- 12. Describe the I/O Ports A, B, C and D of the AVR and explain their functions. Give the alternate function of pins of port A.

Total weightage $2 \times 5 = 10$

Section C (Problem type questions. Answer ANY FOUR questions. Each carry weightage 3)

- 13. Write a ALP program for adding the contents of memory locations 8500 H and 8501H and store the result in 8502 H in 8085 microprocessor. (Assume the sum is 8 bit)
- 14. With the help of a timing diagram explain the memory read machine cycle in 8085 microprocessor.
- 15. Explain the function of instruction LDA 4050 H in 8085 microprocessor. Which are the machine cycles present in its instruction cycle? How many T-states are there?
- 16. Form control word for the following configuration of the ports of Intel 8255 programmable peripheral interface for Mod 0 operation. Port A Output, Port B Output, Port C_{lower} Output, Port C_{upper} Input.
- 17. What is the content stored in general purpose register R17 after the execution of the following ALP code in AVR microcontroller?

```
LDI R16, 0x18
STS 0x330, R16
LDI R17, 0x34
LDS R20, 0x330
SUB R17, R20
```

- 18. Write a program using C for AVR microcontroller to send hexadecimal values from 00 to FF to port B.
- 19. What operation is implemented with the below C program in AVR microcontroller?

```
#include <avr/io.h>
int main(void)
{
    unsigned int x;
    DDRB = 0xFF;
    PORTB = 0xAA;
    for(x = 0; x<=200; x++)
        PORTB = ~PORTB;
    while(1);
    return 0;</pre>
```