1M4A23203

(Pages: 2)

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester M.Sc Mathematics Degree Examination, April 2023

MMT4E11 - Graph Theory

(2019 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part A Answer all questions. Each question carries 1weightage

- 1. Prove that every connected graph contains a spanning tree.
- 2. Define Hamiltonian and non Hamiltonian graphs with suitable examples.
- If G is Hamiltonian and for every nonempty proper subset S of V, Prove that ω(G − S) ≤ |S|.
- 4. Define matching, perfect matching and maximum matching.
- 5. Define edge independent number and edge covering number of graph G.
- 6. Find the Ramsey number r(3,3).
- 7. Prove that every critical graph is a block.
- 8. State Euler's formula in planar graphs and verify for complete graph on four vertices.

Part B

Answer any two questions from each unit. Each questions carries 2weightage.

Unit I

- 9. Show that graph G is forest if and only if every edge of G is cut edge.
- 10. Prove that closure of a graph is well defined.
- 11. If G is a non Hamiltonian simple graph $\nu \ge 3$, prove that G is degree majorised by some $C_{m,\nu}$.

Unit II

- 12. If a matching M in graph G is a maximum matching, Prove that G contains no Maugumenting path.
- 13. Prove that every 3-regular graph without cut edges has a perfect matching.
- 14. Prove that for a bipartite graph, $\chi' = \Delta$.

Unit III

- 15. If G is k-critical, Prove that $\delta \ge k 1$.
- 16. Prove that an inner bridge that avoids every outer bridge is transferable.
- 17. Prove that every planar graph is 5-vertex clourable.

Answer any two questions. Each question carries 5weightage.

- 18. (a) Prove that $\tau(K_n) = n^{n-2}$.
 - (b) Show that a graph G with $\nu \ge 3$ is 2-connected if and only if any two vertices of G are connected by at least two internally disjoint paths.
- 19. (a) If G is a simple graph with $\nu \ge 3$ and $\delta \ge \frac{\nu}{2}$, prove that G is Hamiltonian.
 - (b) Prove that in a bipartite graph, the number of edges in a maximum matching is equal to the number of vertices in a minimum covering.
- 20. (a) Let G be a bipartite graph with bipartition (X,Y). Prove that G contains a matching that saturates every vertex in X if and only if $|N(S)| \ge |S| \forall S \subseteq X$.
 - (b) Prove that $\alpha + \beta = \nu$, where α is independent number and β is covering number of graph G.
- 21. (a) If G is connected simple graph and is neither an odd cycle nor a complete graph, prove that $\chi \leq \Delta$.
 - (b) Prove that a graph is planar if and only if it contains no subdivision of K_5 or $K_{3,3}$

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester M.Sc Mathematics Degree Examination, April 2023 MMT4C15 – Advanced Functional Analysis

(2019 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part A

Answer all questions. Each questions carries 1 weightage.

- 1. Let X be a Banach space over K and $k \in K$. If $k \in \sigma(A)$, then prove that $|k| \leq \inf_{n=1,2,3,\dots} ||A^n||^{\frac{1}{n}} \leq ||A||$.
- 2. Let *X* and *Y* be normed spaces and $F \in BL(X,Y)$. Then prove that ||F|| = ||F'|| = ||F''||.
- 3. Is the sequence space ℓ¹ reflexive? Justify your answer.
- 4. Let H be a Hilbert space and F be nonempty closed subspace of H. Then prove that $F^{\perp \perp} = F$.
- 5. Let X be an inner product space, $\{u_1, u_2, \dots\}$ be an orthonormal set in X and $f \in X'$. Then prove that $\sum_n |f(u_n)|^2 \le ||f||^2$.
- Prove that Riesz representation theorem does not hold for an incomplete inner product space.
- 7. Let H be a Hilbert space and $A \in BL(H)$. Then prove that $||AA^*|| = ||A|| = ||A^*A||$.
- 8. Show, by an example, that if $k \in \sigma_e(A)$ does not follow that $\overline{k} \in \sigma_e(A^*)$.

Part B

Answer two questions from each unit. Each questions carries 2 weightage.

Unit I

- 9. Let X be a Banach space and $A \in BL(X)$ and $||A^p|| < 1$ for some positive integer p, Then prove that I - A is invertible
- 10. Let $X = \ell^1$. Then prove that $x_n \stackrel{w}{\to} x$ in X if and only if $x_n \to x$ in X.
- 11. Prove that every closed subspace of a reflexive normed space is reflexive.

- 12. Let X be a normed space and Y be a Banach space. If $F_n \in CL(X,Y)$, $F \in BL(X,Y)$ and $||F_n F|| \to 0$, then prove that $F \in CL(X,Y)$.
- 13. Let X and Y be normed spaces and $F \in BL(X,Y)$. If $F \in CL(X,Y)$, then prove that $F' \in CL(Y',X')$. Further prove that the converse holds if Y is a Banach space.
- 14. State and prove Riesz representation theorem.

Unit III

- 15. Let H be a Hilbert space and $A \in BL(H)$. Then prove that there is a unique $B \in BL(H)$ such that $\langle A(x), y \rangle = \langle x, B(y) \rangle$ for all $x, y \in H$.
- 16. Let H be a Hilbert space and $A \in BL(H)$ be self adjoint. Then prove that A or -A is positive if and only if $|\langle A(x), y \rangle|^2 = \langle A(x), x \rangle \langle A(y), y \rangle$ for all $x, y \in H$.
- 17. Let H be a Hilbert space and $A \in BL(H)$ be self adjoint. Then prove that $\{m_A, M_A\} \in \sigma_a(A) = \sigma(A) \subset [m_A, M_A]$.

Part C Answer any two questions. Each questions carries 5 weightage.

- 18. Let $1 \le p < \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$. Then prove that the dual of ℓ^p is ℓ^q .
- 19. Let X be a normed space and $A \in BL(X)$ be of finite rank
 - a). Prove that $\sigma_e(A) = \sigma_a(A) = \sigma(A)$.
 - b). Show that $\sigma(A) \not\subset \sigma_a(A)$, in general.
- 20. Let X be a normed space and $A \in CL(X)$. Then prove that
 - a). Every nonzero spectral value of A is eigen value of A.
 - b). If X is infinite diamensional, then $0 \in \sigma_a(A)$.
- 21. Let $A \in BL(H)$. Then prove that
 - a). If R(A) is finite dimensional, then A is compact.
 - b). If each A_n is a compact operator on H and $||A_n A|| \to 0$, then A is compact.
 - c). If A is compact then so is A*.

			~	
1M4	A	Z.3	21	14

(Pages: 2)

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester M.Sc Mathematics Degree Examination, April 2023 MMT4E09 – Differential Geometry

(2019 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part A

Answer all questions. Each question carries 1 weightage

- 1. Sketch the graph of the function $f(x_1, x_2) = x_1$.
- Let f: U → R be a smooth function, where U ⊂ Rⁿ⁺¹. Prove that the gradient of f at p ∈ f⁻¹(c) is orthogonal to all vectors tangent to f⁻¹(c) at p.
- 3. For what values of c is the level set $f^{-1}(c)$ an n-surface, where $f(x_1, x_2) = x_1^2 + x_2^2$.
- 4. Define spherical image of an oriented n-surface.
- 5. Find the velocity and acceleration of the parametrized curve $\alpha(t) = (\cos 3t, \sin 3t)$.
- 6. Let X and Y be smooth vector fields along the parametrized curve $\alpha: I \to R^{n+1}$. Verify that $(X \dotplus Y) = X \dotplus Y$.
- 7. Compute $\nabla_{v} f$, where $f(x_1, x_2) = x_1^2 x_2^2$, $v = (1, 1, \cos \theta, \sin \theta)$.
- 8. Let $\phi: U_1 \to U_2$ and $\varphi: U_2 \to R^k$ be smooth, where $U_1 \subset R^n$ and $U_2 \subset R^m$. Verify the chain rule $d(\varphi \circ \phi) = (d\varphi \circ d\phi)$.

(8×1=8 weightage)

Part B

Answer any two questions from each unit. Each carries 2 weightage

Unit 1

- 9. State and prove the Lagrange multiplier theorem.
- 10. Prove that a connected n-surface S in \mathbb{R}^{n+1} has exactly two orientations.
- 11. Let S be a compact connected oriented n-surface in R^{n+1} exhibited as a level set $f^{-1}(c)$ of a smooth function $f: R^{n+1} \to R$ with $\nabla f(p) \neq 0$ for all $p \in S$. Prove that the Gauss map maps S onto the unit sphere S^n .

Unit 2

- 12. Show that a parametrized curve α in the unit n-sphere is a geodesic if and only if α is of the form $\alpha(t) = \cos \alpha t \, e_1 + \sin \alpha t \, e_2$ where e_1 and e_2 are orthonormal vectors in \mathbb{R}^{n+1} .
- 13. Let S be an n-surface in R^{n+1} , let $p, q \in S$ and let α be a piecewise smooth parametrized curve from p to q. Then prove that the parallel transport $p_{\alpha}: S_P \to S_q$ along α is a vector space isomorphism.
- 14. Show that the Weingarten map of the n-sphere $x_1^2 + x_2^2 + \dots + x_{n+1}^2 = r^2$ of radius r is multiplication by $\frac{1}{r}$.

- 15. Let V be a finite dimensional vector space and let $L: V \to V$ a self-adjoint linear transformation on V. Prove that there exists an orthonormal basis for V consisting of eigen vectors of L.
- 16. Find the Gaussian curvature of the parametrized torus φ in \mathbb{R}^3 represented by $\varphi(\theta, \phi) = ((a + b\cos\phi)\cos\theta, (a + b\cos\phi)\sin\theta, b\sin\phi).$
- 17. Let S be a compact, connected oriented n-surface in R^{n+1} whose Gauss Kronecker curvature is nowhere zero. Prove that the Gauss map $N: S \to S^n$ is a diffeomorphism.

(6×2=12 weightage)

Part C Answer any two questions. Each carries 5 weightage.

- 18. (a) Let X be a smooth vector field on an open set $U \subset \mathbb{R}^{n+1}$ and let $p \in U$. Prove that there exists a maximal integral curve of X passing through the point p. (b) Find the integral curve through p = (1,0) of the vector field \mathbf{X} on \mathbb{R}^2 given by $X(x_1, x_2) = (x_1, x_2, -x_2, x_1).$
- 19. Prove that the Weingarten map at each point p of an oriented n-surface in R^{n+1} is self-adjoint; that is $L_p(v)$. $w = L_p(w)$. v
 - (b) Let C be the circle $f^{-1}(r^2)$, where $f(x_1,x_2)=(x_1-a)^2+(x_1-b)^2$, oriented by the inward normal $\frac{-v_f}{||v_f||}$. Prove that the curvature is $\frac{1}{r}$ at each point.
- 20. Let C be a connected oriented plane curve and let $\beta: I \to C$ be a unit speed global parametrization of C. Prove that β is either one to one or periodic. Also show that β is periodic if and only if C is compact.
- 21. a) Let S be an n-surface in \mathbb{R}^{n+1} and let $f: S \to \mathbb{R}^k$. Then prove that f is smooth if and only if $f \circ \varphi : U \to \mathbb{R}^k$ is smooth for each local parametrization $\varphi : U \to \mathbb{R}^k$.
 - b) State and prove the inverse function theorem for n-surfaces.

 $(2 \times 5 = 10 \text{ weightage})$

1M	4A	23	2	05
			_	

(Pages: 1)

Reg. No:.....

Name:

, FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester M.Sc Mathematics Degree Examination, April 2023

MMT4E14 - Computer Oriented Numerical Analysis

(2019 Admission onwards)

Time: 3 hours

Max. Weightage: 15

PART A (1 Weightage each) (Answer all questions)

- Describe various data types in Python.
- 2. Which are the statements that controls the flow of the program in Python.
- 3. How will you create, read and write files using Python?
- Explain try-except and try-finally statements in Python.

PART B (2 Weightage each) (Answer any Three)

- 5. Write a Python program to find the root of an equation using Newton Raphson method.
- 6. Write a Python program for differentiation when the function is given as a set of n points
- 7. Write a Python program to find $\int_0^1 \frac{1}{1+x^2} dx$ using Trapezoidal rule.
- 8. Write a Python program to solve 10 x+y+z=12, x+10y+z=12, x+y+10z=12, using Gauss-Seidel Method
- 9. Write a Python program to fit a polynomial using Newton Interpolation.

PART C (5 Weightage each) (Answer any One)

- 10. Write a Python program to solve the initial value problem $f(x,y) = \frac{x-y}{x+y}$, y(0) = 1 using Runge-Kutta Method of order 4.
- 11. Write a Python program for Triangular factorization.