1M3N23119

(Pages: 2)

Reg. No:....

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE Name:

Third Semester M.Sc Statistics Degree Examination, November 2023 MST3C10 - Time Series Analysis

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

PART A

Answer any four questions. Weightage 2 for each question.

- 1. What is a time series? Describe seasonal component of a time series.
- 2. Show that the autocorrelation function (ACF) is an even function of the time lag.
- 3. Obtain the Yule Walker equations for AR(2) model.
- 4. Describe ARIMA(p,d,q) process. Determine the constants (p,d,q) of the model $Y_t = 2Y_{t-1} - Y_{t-2} + \epsilon_t$.
- 5. Describe the role of residual analysis in model checking.
- 6. Obtain the spectral density of MA(1) process.
- 7. Define a GARCH (1,1) process ? Mention its important properties.

(4x2=8 Weightage)

PART B

Answer any four questions. Weightage 3 for each question.

- 8. Describe the simple exponential smoothing and moving average method of smoothing in time series analysis.
- 9. Define spectral density $f(\lambda)$ of a stationary time series and show that

$$\gamma(k) = \int_{-\pi}^{\pi} e^{ik\lambda} f(\lambda) \, d\lambda.$$

- 10. Derive the stationarity conditions of an AR(2) model.
- 11. Derive the autocorrelation of $\{Y_t\}$, where $Y_t = \epsilon_t \epsilon_{t-1} + 0.6 \epsilon_{t-2}$ assuming $\{\epsilon_t\}$ as a white noise process.
- 12. What do you mean by forecasting in time series? Explain the I-step ahead forecasting procedure in an AR(p) process.
- 13. Define ARCH(1,1) model. Prove or disprove the statement that an ARCH(1,1) model is stationary.
- 14. Explain the structure of correlogram of a (i) Stationary series (ii) Non stationary series and (iii) a series with seasonal fluctuations. (4x3=12 Weightage)

PART C Answer any 2 questions. Weightage5 for each question.

- 15. Explain the Holt method and Holt winter method (additive and multiplicative cases) of smoothing techniques in time series.
- 16. Derive the ACF of an ARMA(p,q) process and obtain the invertibility conditions.
- 17. Describe the use of maximum likelihood method of finding the parameter estimates of ARMA (1,1) model.
- 18. State and prove Herglotz theorem.

(2x5=10 Weightage)

1M3N23120	(rages:1)	Reg. No.
	FAROOK COLLEGE (AUTONOMO)	Reg. No:

Third Semester M.Sc Statistics Degree Examination, November 2023 MST3C11 - Design and Apple

MST3C11 – Design and Analysis of Experiments
(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part A (Answer any four questions, each carries 2 weightage)

- 1. What do you mean by fixed effect model?
- 2. Discuss linear hypothesis testing?
- 3. Write down the basic assumptions of ANOVA
- 4. What are the characteristics of GLSD?
- 5. When do we prefer RBD over CRD?
- 6. Explain Youden square design?
- 7. Give an example of fractional factorial design?

(4x2 = 8 weightage)

Part B (Answer any four questions, each carries 3 weightage)

- 8. Differentiate split plot design and strip plot design?
- 9. Discuss the steps in planning an experiment.
- 10. Show that for a resolvable BIBD with parameters (v, b, r, k, X), b > v + r 1
- 11. Describe the intrablock analysis of Balanced Incomplete Block Design.
- 12. Illustrate confounding of the interaction effect 'ABC' with reference to 2³ factorial experiments, having A, B, C as factors.
- 13. Identify the situation where the Duncans's multiple range test has been used for?
- 14. Compare BIBD with PBIBD.

(4x3 = 12 weightage)

Part C (Answer any two questions, each carries 5 weightage)

- 15. State and prove Gauss Markov's theorem.
- 16. Derive the analysis procedure of LSD with one and two missing values.
- 17. Explain the analysis of a partially confounded 2³ factorial experiment.
- 18. Discuss the analysis of PBIBD with two associate classes.

(2x5 = 10 weightage)

(Pages: 2)

Reg.	No:
NI.	-16-2

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Statistics Degree Examination, November 2023 MST3C12 - Testing of Statistical Hypothesis

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part A. (Answer any 4 questions, Weightage 2 for each question)

- Compare UMP unbiased and UMP invariant test. 1.
- Show that Neyman Pearson most powerful test is unbiased. 2.
- What do you mean by Neyman structure? 3.
- Explain locally most powerful tests and ∝- similar test. 4.
- Explain chi-square test for homogeneity. 5.
- Explain testing procedure of Wilcoxon signed rank test. 6.
- Define OC function and ASN of SPRT. State its properties. 7.

(4 x 2=8 Weightage)

Part B Answer any four questions (Weightage 3 for each question)

- Let $X_1, X_2, ..., X_5$ be a random sample of size 5 taken from B(1, p). Obtain MP test of 8. size 10% for testing H_0 : $p = \frac{1}{2} Vs H_1$: $p \neq 1/2$. Find the power of the test.
- Define consistency of a test. Show that likelihood ratio test is consistent. 9.
- Show that UMPU exists even if UMP test does not exist. 10.
- Show that the likelihood ratio test criterion for testing H_0 : $\sigma_1^2 = \sigma_2^2$ against H_0 : $\sigma_1^2 \neq \sigma_2^2$ where σ_1^2 and σ_2^2 are the variance of two normal populations leads to F statistic.
- 12. Distinguish between Chi- square goodness of fit and Kolmogorov- Smirnov test. Describe their merits and demerits.
- 13. a) Explain robustness.
 - b) Explain Spearman rank correlation test.
- Show that SPRT terminates with probability one.

 $(4 \times 3=12 \text{ weightage})$

Part C

Answer any two questions (Weightage 5 for each question)

- 15. (a) State and Prove Neyman Pearson lemma.
 - (b) Obtain the Neyman Pearson most powerful critical region under H_0 : $\sigma = \sigma_0$ against H_1 : $\sigma = \sigma_1$, $(\sigma_1 > \sigma_0)$ based on a random sample of size n from $N(\mu, \sigma^2)$ population where μ is known.
- 16. Consider a random sample of size n from $U(0, \theta)$. Suggest a UMP size α test for testing H_0 : $\theta = \theta_0$ against H_1 : $\theta \neq \theta_0$.
- a. Explain median test. Derive null distribution of the test statistic.b. Define Mann-Whitney test. Find mean, variance and asymptotic distribution of the test statistic.
- 18. a. Obtain an approximate expression of the O.C. function of SPRT.

b. State and prove Wald's fundamental identity.

 $(2 \times 5 = 10 \text{ weightage})$

4

	10020		* 1	27
ıM	17	17	4 1	LL
IN	21.	1	,,	

(Pages: 2)

Reg. No:	***************************************
Name:	

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Statistics Degree Examination, November 2023 MST3E01 – Operations Research – I

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part A (Answer any four questions. Weightage 2 for each question)

- Define basic feasible solution of a system of linear equations' Differentiate between degenerate and non degenerate basic feasible solution with the help of an example.
- 2. What you mean by an extreme point of a convex set? Show that optimum feasible solution to a linear programming problem if it exists will always be attained at one of the extreme points of the set of all feasible solutions.
- 3. Define dual of a linear programming problem. State and prove weak duality theorem.
- 4. Define a transportation problem. State and prove a necessary and sufficient condition for the existence of a basic feasible solution to a transportation problem.
- 5. Write note on sensitivity analysis associated with a linear programming problem.
- 6. Define a two person zero sum game. What you mean by saddle point of a game? Give an example of a game with saddle point and without saddle point.
- 7. Discuss the algebraic method of solving a 2x2 zero sum game.

Part B (Answer any four questions, Each question has weightage 3)

- 8. Show that a basic feasible solution corresponds to an extreme point of the set of feasible solutions of a linear programming problem.
- 9. In a linear programming problem if all the net evaluations associated with a basic feasible solution are non-negative show that the solution is optimum for a maximization problem.
- 10. Explain the steps involved in solving a linear programming problem once a basic feasible solution is available
- 11. State and prove fundamental theorem of duality.
- 12. Discuss the algorithm of solving an assignment problem.
- 13. Define an integer programming problem. How an integer programming problem is solved by the branch and bound method.
- 14. Describe method of solving a 2xn game graphically.

Part C (Answer any two questions. Weightage 5 for each question)

15. Use Simplex method to solve

Maximize
$$Z = 3x_1 + 2x_2 + 5x_3$$

Subject to $x_1 + 2x_2 + x_3 \le 430$
 $3x_1 + 2x_3 \le 460$
 $x_1 + 4x_2 \le 420$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$

16. a)Discuss the algorithm of Gomery's cutting plane method in solving and integer programming problem

b)Solve the following integer programming problem by branch and bound method

1

Maximize
$$Z = 2x_1 + 3x_2$$

Subject to $-3x_1 + 7x_2 \le 14$
 $7x_1 - 3x_2 \le 14$

 x_1 and x_2 are non-negative integers

17. Obtain the optimum solution to the transportation problem

	D_{I}	D_2	D_3	D_4	D_5	
01	5	3	7	3	8	30
02	5	6	12	5	7	40
03	2	8	3	4	8	30
O ₄	9	6	10	5	9	80
	40	40	60	20	20	

18.

a) Solve the game graphically

b) Solve the game using LPP

Player A
$$\begin{bmatrix} 1 & -1 & -1 \\ -1 & -1 & 3 \\ -1 & 2 & -1 \end{bmatrix}$$

1M3	N23	123
1M3	120	

(Pages: 2)

Reg No.	***************************************
INO:	AVAPORANI - INC.

Marri	

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Statistics Degree Examination, November 2023 MST3E04 - Life Time Data Analysis

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

PART A Answer any four (2 weightages each)

- 1. What are the key differences between continuous and discrete lifetime distributions? Provide examples of each.
- 2. Explain type II censoring.
- Define Kaplan Meier estimate.
- 4. What is the significance of p-p plots in lifetime data analysis?
- 5. What are the methods for estimating the survivor function of left truncated data?
- 6. Justify Cox likelihood as a partial likelihood.
- 7. What are the key steps in conducting inference under the exponential model for lifetime data?

(2 x 4=8 weightages)

PART B Answer any four (3 weightages each)

- 8. How does the Log-normal distribution model lifetime data, and what are its key parameters?
- 9. What is the mean residual life function? Obtain its relationship with hazard rate. Also, show that the mean residual life function uniquely determines the distribution.
- 10. Explain models with threshold parameters and their relevance in lifetime data analysis.
- 11. Explain the rank test for comparing distributions, specifically the Generalized Wilcoxon test.
- 12. How do you compare different distributions in lifetime data analysis, and why is it important?
- 13. Explain the concept of life tables and their significance in survival analysis.
- 14. Discuss the various descriptive and diagnostic plots used in lifetime data analysis.

PART C Answer any two (5 weightages each)

- 15. Define censoring in the context of lifetime data analysis. What are the statistical methods used to account for censoring
- 16. Explain the concept of mixture models in the context of lifetime data analysis. When are they used?
- 17. Explain the inference procedures for the three-parameter Weibull distribution.
- 18. Explain the concept of proportional hazard models and their applications in modelling survival data.

(5x2=10 weightages)