(Pages: 2)

Reg. No:....

Name:

FAROOK COLĻEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Mathematics Degree Examination, November 2023 MMT3C11 - Multivariable Calculus & Geometry

(2022 Admission onwards)

Time: 3hours

8

Max. Weightage:30

Part A

Answer all questions, Each question has weightage 1.

- Suppose X is a vector space, and $\dim R^n = n$. Prove that a set E of n vectors in X spans X 1. if and only if E is independent.
- Let $A \in L(\mathbb{R}^n, \mathbb{R}^m)$. Prove that $||A|| < \infty$ 2.
- Show that $det[A]_1 = -det[A]$, if $[A]_1$ is an nxn matrices obtained from [A] by 3. interchanging two columns.
- Define a parametrized curve. Find a parametrization of the level curve $y^2 x^2 = 1$. 4.
- 5. Define arc length of a curve y. Calculate the arc length of the catenary $v(t) = (t, \cos t)$ Starting at the point (0,1).
- Prove that any reparametrization of a regular curve is regular. 6.
- Calculate the first fundamental form of the surface: 7. $\sigma(u, v) = (\cosh u, \sinh u, v).$
- Compute the second fundamental form of the elliptic paraboloid 8.

$$\sigma(u,v)=(u,v,u^2+v^2).$$

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer six questions choosing two from each unit Each question has weightage 2

UNIT I

- Let r be a positive integer. If a vector space X is spanned by a set of r vectors then prove 9.
- Let f maps an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m and f is differentiable at a point $x \in E$. Prove 10. $(1 \le j \le n)$ that $(D_j f_i)(x)$) exist, and $f^1(x)e_j = \sum_{i=1}^m (D_j f_i)(x)$ u_i . Let [A] and [B] are n by n matrices. Prove that det([B][A]) = det[B] det[A].
- 11.

UNIT II

- 12. Prove that a parametrized curve has a unit-speed reparametrization if and only if it is regular.
- 13. Let γ is a regular closed curve of period T. Prove that its unit speed reparametrization of γ is always closed.
- 14. Let γ be a unit-speed curve in R^3 with constant curvature and zero torsion. Prove that γ is a parametrization of (part of) a circle.

UNIT III

- 15. Prove that the area of a surface patch is unchanged by reparametrization.
- 16. Calculate the Gaussian curvature of $\sigma(u,v) = (f(u)\cos v, f(u)\sin v, g(u))$ where f > 0 and $\dot{f}^2 + \dot{g}^2 = 1$.
- 17. Calculate the principal curvatures of the helicoids $\sigma(u, v) = (v\cos u, v\sin u, \lambda u)$.

 $(6 \times 2 = 12 \text{ weightage})$

Part C Answer two questions Each question has weightage 5.

- 18. State and prove inverse function theorem.
- 19. (a) Let the distance between A and B in $L(R^n, R^m)$ be defined as ||A B||. Prove that $L(R^n, R^m)$ is a metric space.
 - (b) Prove that if X is a complete metric space and φ is a contraction from X into X, then φ has a unique fixed point in X.
- 20. Let $\gamma(s)$ and $\tilde{\gamma}(s)$ be two unit-speed curves in R^3 with the same curvature $\kappa(s) > 0$ the same torsion $\tau(s)$ for all s. Then, there is a direct isometry M of R^3 such that $\tilde{\gamma}(s)=M(\gamma(s))$ for all s. Further, if k and t are smooth functions with k>0 everywhere, there is a unit-speed curve in R^3 whose curvature is k and whose torsion is t.
- 21. Let S be a connected surface of which every point is an umbilic. Then, prove that S is an open subset of a plane or a sphere.

 $(2 \times 5 = 10 \text{ weightage})$

1M3N23090	1	M	31	12:	30	9	0
-----------	---	---	----	-----	----	---	---

(Pages: 2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Mathematics Degree Examination, November 2023

MMT3C12 - Complex Analysis

(2022 Admission onwards)

Time: 3 hours

2

Max. Weightage:30

Part A Answer all questions. Each question has weightage 1.

- 1. Find the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{z^n}{n!}$
- 2. Let T be a Mobius transformation. Show that $T(0) = \infty$ and $T(\infty) = 0$ if and only if $T(z) = \frac{a}{z}$ for some complex number a.
- 3. Show that $f(z) = x^2 + y^2$ has a derivative only at the origin where x = Re(z) and y = Im(z).
- 4. Evaluate the integral $\int_{\gamma} \frac{(2z+1)}{z^2+z+1} dz$ where γ is the circle |z|=2.
- 5. Show that a bounded entire function is a constant.
- 6. Obtain the Laurent series expansion of $f(z) = \frac{1}{(z-1)(z-2)}$ for 1 < |z| < 2.
- 7. Give an example of a meromorphic function that has infinitely many simple poles.
- 8. State Schwarz's lemma.

 $(8 \times 1 = 8 \text{ Weightage})$

Part B

Answer six questions choosing two from each unit. Each question has weightage 2.

Unit 1

- 9. Discuss the stereographic projection
- 10. Prove that the cross ratio of 4 distinct points in the extended complex plane is a real number if and only if they all lie on a circle.
- 11. If G is open and connected and $f: G \rightarrow C$ is differentiable with $f'(z) = 0 \ \forall z$ in G, prove that f is a constant.

- 12. Are the zeroes of an analytic function isolated? Justify your answer.
- 13. State and prove Maximum Modulus theorem.
- 13. State and prove that $\frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z-a}$ is an integer.

Unit 3

- 15. Prove that an entire function has a removable singularity at infinity if and only if it is a constant.
- 16. Prove that if f has an essential singularity at z = a, then f(z) comes arbitrarily close to every complex number as z approaches a.
- 17. Let f be a meromorphic function on a region G. Show that neither the poles nor the zeros of f have a limit point.

 $(6 \times 2 = 12 \text{ Weightage})$

Part C

Answer any two questions. Each question has a weightage 5.

- 18. Let G and Ω be open subsets of C and $f: G \to C$ and $g: \Omega \to C$ be functions such that $f(G) \subseteq \Omega$.
 - (a) Let f and g be analytic on G and Ω respectively. Show that $g \circ f$ is analytic and finds its derivative.
 - (b) If f is continuous on G, g is differentiable, g(f(z)) = z for all $z \in G$ and $g'(z) \neq 0$, then prove that f is differentiable and $f'(z) = \frac{1}{g'(f(z))}$
 - 19. Find an analytic function $f: G \to \mathbb{C}$ where $G = \{z: Re z > 0\}$ such that $f(G) = \{z: |z| < 1\}$.
 - 20. Let G be open in C and let γ be a rectifiable path in G with initial and end points α and β respectively. Then prove that $\int f = F(\beta) F(\alpha)$, where $f: G \to C$ is a continuous function with a primitive $F: G \to C$.
 - 21. (a)State and prove Residue theorem.
 - (b) Find a pole a and residue at a of the function $f(z) = z^2(1+z^4)^{-1}$.

 $(2 \times 5 = 10 \text{ Weightage})$

/D-	
LEBURG	
(Pages	141

Reg.	No:.	٠.		•		•	n	٠	٠.	•	٠		٠	• •	

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Mathematics Degree Examination, November 2023 MMT3C13 – Functional Analysis

(2022 Admission onwards)

Time: 3 hours

Max. Weightage:30

Part A

Answer all questions. Each question carries 1 weightage.

- 1. Let d be the discrete matrix and d' be the usual metric on X, then show that d is stronger than d'.
- 2. Prove that every totally bounded set is bounded.
- 3. If a sequence (x_n) in the metric space l^p , $1 \le p \le \infty$, converges to x in l^p , then prove that $(x_n(j))$ for each $j = 1, 2, \ldots$ converges to (x(j)) in \mathbb{K} .
- 4. Let X and Y be normed spaces. If X is finite dimensional, then show that every linear map from $X \to Y$ is continuous.
- 5. Let X be a linear space over \mathbb{C} . Regarding X as a linear space over \mathbb{R} , consider a real linear functional $u: X \to \mathbb{R}$. Define $f(x) = u(x) iu(ix), x \in X$. Prove that f is a complex-linear functional on X.
- 6. Let X be a normed space over \mathbb{K} , and f be non-zero linear functional on X. If E is an open subset of X, then show that f(E) is an open subset of \mathbb{K} .
- 7. Let X and Y be normed spaces and $F: X \to Y$ be linear. Prove that F is continuous if and only if $g \circ F$ is continuous $\forall g \in Y'$.
- 8. Let X and Y be normed spaces. If Z is a closed subspace of X, then show that the quotient map Q from X to X/Z is continuous.

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer any two questions from each unit. Each question carries 2 weightages.

UNIT- I

- 9. Show that the metric space l^p is complete for $1 \le p < \infty$.
- 10. If $m(E) < \infty$ and $1 \le p < \infty$, then show that the set of all bounded continuous function on E is dense in $L^p(E)$.
- 11. If $n \ge 2$, then show that \mathbb{K}^n with the norm $\|\cdot\|_2$ is strictly convex.

UNIT- II

- 12. Let X and Y be normed spaces with X finite dimensional. Then prove that every bijective linear map from X to Y is a homeomorphism.
- 13. State and prove the Hahn-Banach separation theorem.
- 14. Show that a normed space X is a Banach space iff every absolute summable series of elements in X is summable in X.

UNIT- III

- 15. State and prove the uniform boundedness principle for Banach spaces.
- 16. Let X be a normed space and E be a subset of X. Then prove that E is bounded in X if and only if f(E) is bounded in K for every $f \in X'$.
- 17. Let X and Y be normed spaces and $F: X \to Y$ be linear. Then prove that F is an open map if there exists some $\gamma > 0$ such that every $\gamma \in Y$, there is some $\gamma \in X$ with $\gamma \in Y$ and $\gamma \in Y$ with $\gamma \in Y$ and $\gamma \in Y$ with $\gamma \in Y$ and $\gamma \in Y$ with $\gamma \in Y$ with $\gamma \in Y$ and $\gamma \in Y$ with $\gamma \in Y$ and $\gamma \in Y$ with $\gamma \in Y$ with $\gamma \in Y$ and $\gamma \in Y$ with $\gamma \in Y$ and $\gamma \in Y$ with $\gamma \in Y$ with $\gamma \in Y$ and $\gamma \in Y$ with $\gamma \in Y$ and $\gamma \in Y$ with $\gamma \in Y$ with $\gamma \in Y$ and $\gamma \in Y$ with $\gamma \in Y$ with $\gamma \in Y$ and $\gamma \in Y$ with $\gamma \in Y$ with $\gamma \in Y$ with $\gamma \in Y$ and $\gamma \in Y$ with $\gamma \in Y$ with

 $(6 \times 2 = 12 \text{ weightages})$

Part C Answer any two questions. Each question carries 5weightages.

- 18. (a) Sate and Minkowski's inequality for sequences.
 - (b) State and prove Riesz lemma.
- 19. Let X be a normed space. Prove that for every subspace Y of X and every $g \in Y'$, there is a unique Hahn-Banach extension of g to X if and only if X' is strictly convex.
- 20. (a) Let X be normed space and Y be a closed subspace of X. Show that X is a Banach space iff Y and $\frac{X}{Y}$ are Banach spaces in the induced norm and the quotient norm, respectively.
 - (b)Prove that a Banach space cannot have a denumerable (Hamel) basis.
- 21. (a) State and prove the open mapping theorem.
 - (b) State and prove Bounded inverse theorem.

 $(2 \times 5 = 10 \text{ weightages})$

	78	77	007
1 M	217	43	092

(Pages: 3)

Reg. No:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Mathematics Degree Examination, November 2023 MMT3C14 - PDE & Integral Equations

(2022 Admission onwards)

Time: 3 hours

Max. Weightage :30

Part A Answer all questions. Each question carries 1 weightage

- 1. Show that the Cauchy problem $u_x = c_0 u$, $u(x, 0) = 2e^{c_0 x}$, where c_0 is a constant, has infinitely many solutions.
- 2. Consider the equation $u_{xx} + 2u_{xy} + [1 q(y)]u_{yy} = 0$, where

$$q(y) = \begin{cases} -1 & ; \ y < -1 \\ 0 & ; \ |y| \le 1 \\ 1 & ; \ y > 1 \end{cases}$$

Find the domains where the equation is parabolic, elliptic and hyperbolic.

- 3. Define Dirichlet problem, Neumann problem and Robin problem.
- 4. If u(x,t) is the solution of the Cauchy problem

$$u_{tt} - u_{xx} = 0$$
; $0 < x < \infty$, $t > 0$, $u(x,0) = \cos\left(\frac{\pi}{2}x\right)$; $0 \le x < \infty$, $u_t(x,0) = 0$; $0 \le x < \infty$, $u_x(0,t) = 0$; $t > 0$,

evaluate u(2,2).

- 5. Derive a necessary condition for the existence of a solution to the Neumann problem.
- 6. Reduce the Volterra integral equation $y(x) = x \cos x + \int_0^x (x \xi)y(\xi) d\xi$ to equivalent initial value problem.
- 7. Show that the kernel $K(x, \xi) = \sin x \cdot \cos \xi$ has no characteristic numbers associated with $(0, 2\pi)$.
- 8. Check whether the kernel defined by $k(x,\xi) = \cos(x+\xi)$ is separable or not.

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer any two questions from each unit. Each question carries 2 weightage

Unit I

- 9. Explain the characteristics method to solve the initial value problem associated with first order Quasilinear PDEs and use it to solve $u_x = 1$, u(0, y) = g(y); where g(y) is a function of y.
- 10. Reduce the equation $u_{xx} + 6u_{xy} 16u_{yy} = 0$ into its canonical form. Hence find its general solution.
- 11 Solve the Eikonal equation $p^2 + q^2 = n_0^2$, u(x, 2x) = 1.

Unit II

12. Solve the problem

$$u_t = u_{xx}; \quad 0 < x < \pi, \quad t > 0,$$

$$u(0,t) = u(\pi,t) = 0; \quad t \ge 0$$

$$u(x,0) = \begin{cases} x; & 0 \le x \le \pi/2 \\ \pi - x; & \pi/2 < x \le \pi \end{cases}$$

- 13. Use the method of separation of variables to solve the Wave equation with homogeneous boundary conditions.
- 14. Using the energy method prove uniqueness of the problem

$$u_t - ku_{xx} = F(x,t); \ 0 < x < L, t > 0,$$

 $u(0,t) = a(t), \quad u(L,t) = b(t); \ t \ge 0$
 $u(x,0) = f(x); \ 0 \le x \le L$

Unit III

15. Determine the eigen values and eigen functions of the integral equation

$$y(x) = F(x) + \lambda \int_0^{2\pi} \sin(x + \xi) \ y(\xi) \ d\xi$$

- 16. Show that the characteristic functions of the homogeneous Fredholm integral equation $y(x) = \lambda \int_a^b K(x, \xi) y(\xi) d\xi$, with the symmetric kernel $K(x, \xi)$, corresponding to distinct characteristic numbers are orthogonal over (a, b).
- 17. Derive the formula $\underbrace{\int_a^x \dots \int_a^x}_{n \text{ times}} f(x) dx \dots dx = \frac{1}{(n-1)!} \int_a^x (x-\xi)^{n-1} f(\xi) d\xi$

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any two questions. Each question carries 5 weightage

- 18. (a) Show that the Cauchy problem $(y + u)u_x + yu_y = x y$; u(x, 1) = 1 + x has a unique solution. Also find the solution u as a function of x and y.
 - (b) Prove that the equation $x^2u_{xx} 2xyu_{xy} + y^2u_{yy} + xu_x + yu_y = 0$ is parabolic and find its canonical form. Also find the general solution on the half plane x > 0.
- 19. (a) Solve the Laplace equation in the square $0 < x, y < \pi$, subject to the Dirichlet condition u(x, 0) = 1984, $u(x, \pi) = u(0, y) = u(\pi, y) = 0$.
 - (b) State and prove The mean value principle.
- 20. (a) Discuss the iterative method for solving Fredholm integral equations of second kind.
 - (b) Use Green's function to transform the boundary value problem y'' + y = x; y(0) = 0, y'(1) = 1 to a Fredholm Integral equation.
- 21. (a) Use the Lagrange method to find a function u(x,y) that solves the Cauchy problem $uu_x + u_y = 1; \quad u(3x,0) = -x, \quad -\infty < x < \infty$
 - (b) Show that the curve $\{(3x, 2, 4 3x): -\infty < x < \infty\}$ is contained in the solution surface u(x, y).
 - (c) Solve $uu_x + u_y = 1$; u(3x, 2) = 4 3x, $-\infty < x < \infty$

 $(2 \times 5 = 10 \text{ weightage})$

(Pages: 2)

Reg.	No:.		٠	•	٠	•	•		٠	•	٠	•		•	٠	ų	+	•	

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Mathematics Degree Examination, November 2023 MMT3E03 - Measure & Integration

(2022 Admission onwards)

Time: 3 hours

Max. Weightage:30

Part A

Answer all questions. Each question carries 1 weightage.

- 1. Let *E* be a measurable set in a measurable space *X* and $\chi_E(x) = \begin{cases} 1, & \text{if } x \in E \\ 0, & \text{if } x \notin E \end{cases}$. Then prove that χ_E is a measurable function on *X*.
- 2. Prove that if f is a real function on a measurable space X such that $\{x | f(x) \ge r\}$ is measurable set for every rational r, then prove that f is measurable.
- 3. If $f \in L^1(\mu)$, then prove that $\left| \int_X f d\mu \right| \le \int_X |f| d\mu$.
- 4. If $\lambda_1 \perp \mu$ and $\lambda_2 \perp \mu$, then prove that $\lambda_1 + \lambda_2 \perp \mu$
- 5. State Lebesgue Radon Nykodym theorem.
- 6. Define Jordan decomposition of a real measure μ on a sigma algebra \mathfrak{M} . State the minimum property of the Jordan decomposition.
- 7. Suppose that (X, S) and (Y, T) are measurable spaces. If $E \in S \times T$, then prove that $E_x \in T$
- 8. Prove that Fubini theorem fails if the measures are not σ -finite.

Part B

Answer two questions from each unit. Each question carries 2 weightage.

Unit I

- 9. State and prove Lebesgue's monotone convergence theorem.
- 10. Suppose $\{f_n\}$ is a sequence of complex measurable functions defined a.e on X such that $\sum_{n=1}^{\infty} \int_X |f_n| d\mu < \infty$. Then prove that the series $f(x) = \sum_{n=1}^{\infty} f_n(x)$ converges for almost all x, $f \in L^1(\mu)$ and $\int_X f d\mu = \sum_{n=1}^{\infty} \int_X f_n d\mu$.
- 11. State and prove Urysohn's Lemma.

Unit II

- 12. Prove that every set of positive measure has non measurable subset.
- 13. Suppose $f \in L^1(\mu)$, f is real valued and $\epsilon > 0$. Prove that there exists functions u and v such that $u \le f \le v$, u is upper semicontinuous and bounded above, v is lower semicontinuous and bounded below and $\int_X (v u) d\mu < \epsilon$.
- 14. Prove that the total variation $|\mu|$ of a complex measure μ on $\mathfrak M$ is a positive measure on $\mathfrak M$.

Unit III

- 15. Suppose $1 \le p < \infty$, μ is a σ -finite positive measure on X, $\mu(X) < \infty$ and Φ is a bounded linear functional on $L^p(\mu)$. Then prove that there is a function $g \in L^1(\mu)$ such that $\Phi(f) = \int_X f g d\mu$.
- 16. Prove that the class of elementary set is an algebra.
- 17. State and prove Fubini theorem.

Part C

Answer any two questions. Each question carries 5 weightage.

- 18. Prove that every measure μ on a σ -algebra can be completed.
- 19. State and prove Lusin's theorem.
- 20. Let μ be a positive σ -finite measure on a σ -algebra $\mathfrak M$ in a set X, and let λ be a complex measure on $\mathfrak M$. Then prove that there is then a unique pair of complex measures λ_a and λ_s on $\mathfrak M$ such that $\lambda = \lambda_a + \lambda_s$, $\lambda_a \ll \mu$, $\lambda_s \perp \mu$. Further prove that there is a unique $h \in L^1(\mu)$ such that $\lambda_a = \int_E h d\mu$ fo every set $E \in \mathfrak M$.
- 21. Let (X, S, μ) and (Y, T, λ) be σ -finite measure spaces. Suppose $\varphi(x) = \lambda(Q_x)$, $\psi(y) = \mu(Q^y)$ for every $x \in X$ and $y \in Y$, then prove that φ is S-measurable, ψ is T-measurable and $\int_X \varphi d\mu = \int_Y \psi d\lambda$.