20

1	M2	17	31	13
1	IVIL	124	JI	IJ

(Pages: 2)	Reg.

Name:

No:....

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester M.Sc Statistics Degree Examination, April 2023

MST2C06 - Probability Theory - II

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part A (Short answer type questions) Answer any four questions. Each question carry weight two.

- 1. Define characteristic function of a random variable and show that it is uniformly continuous.
- Prove that a characteristic function is real if and only if the associated random variable is symmetric about the origin.
- 3. State Kolmogorov inequality. How it is related to Chebyshev's inequality.
- Explain how law of large numbers, central limit theorem and law of iterated logarithm differ. State Kolmogorov law of iterated logarithm.
- 5. State Lindberg-Feller central limit theorem. Deduce Linberg-Levy theorem from it
- 6. When do you say that a distribution is infinite divisible. What is its significance in central limit problem?
- 7. Define conditional expectation. Establish its linearity property.

Part B(Short essay type questions.) Answer any four questions, each question has weight three.

- 8. State and prove inversion theorem of characteristic function.
- 9. Derive the characteristic function of a standard Cauchy distribution.
- 10. Establish Kolmogorov three series criterion.
- 11. For a sequence of IID random variables show that existence of expectation is a sufficient condition for applying law of large numbers.
- 12. State and prove Liapunove central limit theorem.
- 13. Establish Glivenko-Cantelli theorem.
- 14. If $\{x_n\}$ is a sequence of sub-martingale then for any $\alpha>0$, show that $P[Max(X_1,X_2,...,X_n\geq\alpha)]\leq E[|IX_nI|]/\alpha.$

Part C (Long essay type questions) Answer any two questions. Each question carries five weights.

- 15. State and prove Levy continuity theorem.
- 16. Establish Kolmogogorov strong law of large numbers for IID sequence of random variables.
- 17. A. Let $\{X_n\}$ be sequence of independent random variables such that $P[X_n = -n^{-\alpha}] = P[X_n = n^{\alpha}] = p, P[X_n = 0] = 1-2p \ (0 For which value of <math>\alpha$ the sequence obeys the central limit theorem.
 - B. If Lindberg-Feller condition is satisfied for a sequence $\{X_n\}$ of independent standard variables, prove that for every $\epsilon > 0$, as n tend to ∞

 $P[Max_k | X_k | \ge \varepsilon \sqrt{n}]$ tend to zero.

18. State up-crossing inequality for martingales. Use it to prove martingale convergence theorem.

1M2A	23114
------	-------

(Pages: 2)	Reg. No:
	Nama

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester M.Sc Statistics Degree Examination, April 2023 MST2C07 – Applied Regression Analysis

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

PART A Answer any four (2 weightages each)

- Briefly explain the uses of regression.
- 2. Define a general Gauss Markov linear model.
- 3. How do you handle regression analysis when the errors are correlated?
- 4. Define residuals. What are the properties of residuals?
- 5. What is stepwise regression?
- 6. What is non-parametric regression and how does it differ from parametric regression methods?
- 7. Explain various link functions used in GLM.

(2 x 4=8 weightages)

PART B

Answer any four (3 weightages each)

- For the simple linear regression model derive the properties of the least square estimators and the fitted regression model.
- What do you meant by variable selection problem? Discuss the criteria for evaluating subset regression models.
- 10. Find the least square estimate of μ_1 , μ_2 from the observational equations, $E(Y_1) = \mu_1$, $E(Y_2) = \mu_1 + \mu_2$, and $E(Y_3) = \mu_2$.
- 11. Explain various probability plots to examine the normality assumption in regression analysis.
- 12. What are orthogonal polynomials? Describe how it is used in regression Analysis.
- 13. Describe Poisson regression model. Discuss the inferential procedures of this model?
- 14. Derive the maximum likelihood estimator of generalized linear model.

(3x 4=12 weightages)

PART C Answer any two (5 weightages each)

- 15. What do you meant by a multiple linear regression model? Derive the unbiased estimates of the model parameters along with their variances.
- 16. Discuss the state of affairs and consequences on account of possible departures from the underlying assumptions on a linear model.
- 17. Explain polynomial regression in one and several variables.
- 18. Discuss logistic regression models. How will you estimate the parameters in this model?

(5x2=10 weightages)

(Pages: 2)

Reg. No:....

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester M.Sc Statistics Degree Examination, April 2023 MST2C08 – Estimation Theory

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

PART A(Short Answer type) (Answer any 4 questions. Weightage 2 for each question)

- 1. Define sufficiency. Obtain a sufficient statistic for θ in $U(0, \theta)$ based on a random sample of size n.
- 2. Let $X_1, X_2, ..., X_n$ be a random sample from Bernoulli(p). Obtain an unbiassed estimator of p^2 .
- 3. Define Fisher information matrix. Obtain the information matrix for $N(\theta, \sigma^2)$.
- 4. Obtain the MLE of θ based on a random sample of size 'n', from the population with p.d.f. $f(x) = \frac{1}{2}e^{-|x-\theta|}$, $-\infty < x < \infty$.
- 5. State Cramer-Huzurbazar Theorem.
- 6. Define informative and non-informative priors. Give examples.
- 7. Distinguish between UMA and UMAU confidence intervals.

 $(4 \times 2 = 8 \text{ weightage})$

PART B(Short Essay type questions) (Answer any 4 questions. Weightage 3 for each question)

- 8. Prove that "every one to one function of a sufficient statistic is also sufficient". Give an example to show that in general a continuous function of a sufficient statistic need not be sufficient.
- 9. State Cramer-Rao inequality. Find the Cramer-Rao lower bound for the variance of unbiased estimators of θ in exponential distribution with mean θ .
- 10. Let $X_1, X_2, ..., X_n$ be a random sample from $U(0, \theta)$. Show that $(\prod_{i=1}^n X_i)^{\frac{1}{n}}$ is a consistent estimator of $\frac{\theta}{e}$.
- 11. Define CAN estimator. Find the CAN estimator of $e^{-\lambda}$ when $X \sim P(\lambda)$.
- 12. Explain the method of moment estimation. Obtain moment estimators of the parameters in $Gamma(\alpha, \beta)$ based on a random sample of size n.

- 13. Define Bayes estimator, show that under squared error loss Bayes estimator is the mean of the posterior distribution.
- 14. Explain the concept of shortest length confidence interval. Obtain the shortest confidence interval for θ from $U(0, \theta)$ in terms of the order statistic $X_{(n)}$.

 $(4 \times 3 = 12 \text{ weightage})$

PART C (Long Essay type questions) (Answer any 2 questions. Weightage 5 for each question)

- 15. Define complete sufficiency and minimal sufficiency. Prove that a complete sufficient statistics is minimal sufficient. Is the converse true? justify your claim.
- 16. State and prove sufficient conditions for an estimator to be consistent. Obtain a consistent estimator of μ^2 in $N(\mu, \sigma^2)$ based on a random sample of size n.
- 17. By stating the necessary regularity conditions prove the asymptotic normality of MLE.
- 18. Define unhiased confidence intervals. Consider a random sample of size n from exponential distribution with mean λ . Obtain an unbiased confidence interval of λ .

 $(2 \times 5 = 10 \text{ weightage})$

(Pages: 1)

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester M.Sc Statistics Degree Examination, April 2023 MST2C09 – Stochastic Process

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

PART A Answer any four (2weightage each)

- 1. Define a Stochastic process. Explain the classification with the help of an example.
- 2. Show that states of a one-dimensional symmetric random walk are recurrent.
- 3. Explain open system
- 4. Explain Compound Poisson Process
- 5. Show that renewal function satisfies the renewal equation.
- 6. Derive the backward differential equation satisfied by a birth and death process
- 7. Explain the significance of Little's formula in queuing theory

(4x2=8weightage)

Part B Answer any four (3 weightage each)

- 8. Derive Poisson Process
- 9. Define periodicity. Show that it is a class property.
- 10. Explain how Poisson process is related to binomial and uniform distribution.
- 11. State and prove Chapman-Kolmogorov equation.
- 12. State and prove elementary renewal theorem
- 13. (a) Derive Wald's equation
 - (b) Show that the renewal function $m(t) = \sum_{n=1}^{\infty} F_n(t)$, $\forall t$, where $F_n(t) = P(S_n \le t)$, $n \ge 1$, $\forall t$
- 14. Describe M/G/I queueing system.

(4x3=12weightage)

PART C Answer any two (5 weightage each)

- 15. (a) State and Prove ergodic theorem of Markov Chain.
 - (b) Explain Gamblers ruin problem. Derive Ultimate winning of the Gambler.
- Explain Yule-Furry Process. Find its probability distribution. Hence or otherwise find its mean and variance.
- 17. Find the steady state probability distribution for M/M/S queue.
- 18. (a) State and prove central limit Theorem on Renewal process.
 - (b)Explain Renewal reward process

(2x5=10 weightage)