(Pages: 2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester M.Sc Mathematics Degree Examination, April 2023 MMT2C06 – Algebra II

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Answer all questions. Each question carries I weightage

- 1. Prove that a finite extension is an algebraic extension.
- 2. Define algebraically closed field. Give example.
- 3. Determine all isomorphisms of $Q(\sqrt{2})$ into \bar{Q}
- 4. Let K be the splitting field of $x^4 + 1$ over Q. Show that G(K/Q) is isomorphic to klein-4 group
- 5. Find all automorphisms of the field Z_p where p is a prime
- 6. Let F be a field of characteristic zero and let $a \in F$. Let K be the splitting field of $x^n a$ over F. Suppose F contain all the n^{th} root of unity. Prove that G(K/F) is abelian.
- 7. Define maximal ideal of a ring R and give one example.
- 8. Show that the field R of reals is not algebraically closed. Also find the algebraic closure of R

Part B

Answer any two questions from each unit. Each question carries 2 weightage

Unit I

- 9. Let *H* be a subgroup of the Galois group G(K/Q). Show that $K_H = \{a \in K : \sigma(a) = a\}$ is a subfield of *K*.
- 10. If F is a field then show that every ideal in F [X] is principal
- 11. Find all prime ideals of Z_n

- 12. Prove that a maximal ideal in a commutative ring with unity is a prime ideal.
- 13. Is the regular 150-gon constructable? Give reason.
- 14. Prove that a field is perfect if every extension is a separable extension.

Unit III

- 15. Let α be a real cube root of 2. Verify that $Q(\alpha)$ is not a splitting field. also find the splitting field of $\{x^3 2, x^3 3\}$ over Q.
- 16. Find $\Phi_8(x)$ over Z_3 .
- 17. Give an example for an extension E of $Q(2^{\frac{1}{3}})$ such that $[E:Q] = \{E:Q\} = |G(E/Q)|$.

Part C

Answer any two questions from each unit. Each question carries 5 weightage

- 18. Let E be an extension of a field F and let $\alpha \in E$. Prove that
 - (a) $\varphi_{\alpha}: F[X] \to E$ defined by $f(x) \to F(\alpha)$ for $f(x) \in F[X]$ is a homomorphism
 - (b) If α is algebraic over F, then $Ker \varphi_{\alpha} \neq \{0\}$.
 - (c) If α is transcendental over F then φ_{α} is dne-one.
- 19. (a)State and prove Conjugation isomorphism theorem.
 - (b)Prove that Complex zeros of polynomials with real coefficients occur in conjugate pairs
- 20. (a) Prove that $x^2 3$ is irreducible over $Q(2^{\frac{1}{3}})$
 - (b) Let E be a finite extension of a field F and K be a finite extension of a field E. Prove that K is a finite extension of field F and [K:F] = [K:E][E:F]
- 21. (a) Show that Doubling the cube is impossible.
 - (b) Describe the $\Phi_8(x)$ over Q. Show that $\Phi_8(x) = x^4 + 1$.

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester M.Sc Mathematics Degree Examination, April 2023

MMT2C07 - Real Analysis - II

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part-A

Answer all questions. Each question carries 1 weightage

- 1) State and prove excision property of Lebesgue outer measure.
- 2) If A and B are measurable subsets of \mathbb{R} , prove that $A \cup B$ is measurable.
- 3) If f is measurable, show that for any extended real number c, the set $\{x \mid f(x) = c\}$ is measurable
- 4) Let ϕ and ψ be simple functions defined on a set of finite measure E. Prove that

$$\int_{E} (\phi + \psi) = \int_{E} \phi + \int_{E} \psi$$

- 5) State and prove the integral comparison Test.
- 6) Let $\{f_k\}_1^n$ be a finite family of functions, each of which is integrable over E. Show that $\{f_k\}_1^n$ is uniformly integrable and tight over E.
- 7) Let $f(x) = \begin{cases} x \cos\left(\frac{\pi}{2x}\right) & \text{if } 0 < x \le 1 \\ 0 & \text{if } x = 0 \end{cases}$. Is f of bounded variation on [0,1]?
- 8) If the function f is Lipschitz on a closed, bounded interval [a, b], prove that it is absolutely continuous on [a, b].

Part-B

Answer any two questions from each unit. Each question carries 2 weightage

Unit - I

- 9) Prove that every interval is measurable.
- 10) Prove that any set of real numbers with positive outer measure contains a subset which is not measurable.
- 11) Let the function f be defined on a measurable set E. Prove that f is measurable if and only if for each open set O, $f^{-1}(O)$ is measurable.

Unit - II

12) Let $\{f_n\}$ be a sequence of bounded measurable functions on a set of finite measure E and $\{f_n\} \to f$ uniformly on E. Prove that

$$\lim_{n\to\infty}\int_E f_n = \int_E f$$

- 13) State and prove the Lebesgue Dominated Convergence theorem.
- 14) Assume E has finite measure. Let $\{f_n\}$ be a sequence of measurable functions on E that converges pointwise a.e. on E to f and f is finite a.e. on E. Prove that $\{f_n\} \to f$ in measure on E.

Unit - III

- 15) Let f be an increasing function on the closed, bounded interval [a,b]. Prove that for each a $\alpha > 0$, $m^*\{x \in (a,b) | \overline{D}f(x) \ge \alpha\} \le \frac{1}{\alpha} [f(b) f(a)]$ and $m^*\{\{x \in (a,b) | \overline{D}f(x) = \infty\} = 0$
- 16) Prove that a function f on a closed, bounded interval [a, b] is absolutely continuous on [a, b] if and only if it is an indefinite integral over [a, b].
- 17) Let E be a measurable set and $1 \le p \le \infty$. Suppose $\{f_n\}$ is a sequence in $L^p(E)$ that converges pointwise a.e. on E to the function f which belongs to $L^p(E)$. Prove that $\{f_n\} \to f$ in $L^p(E)$ if and only if $\lim_{n\to\infty} \int_E ||f_n||_p = \int_E ||f||_p$

Part-C

Answer any two questions. Each question carries 5 weightage

18)

a) If $\{A_k\}_{1}^{\infty}$ is an ascending collection of measurable sets, then prove that

$$m\left(\bigcup_{k=1}^{\infty} A_k\right) = \lim_{k \to \infty} m(A_k)$$

b) Let $\{f_n\}_1^{\infty}$ be a sequence of measurable functions on E that converges pointwise a. e. on E to the function f. Prove that f is measurable.

- (9) State and prove the bounded convergence theorem.
 - b) Let the functions f and g be integrable over E. Prove that for any α and β , the function $\alpha f + \beta g$ is integrable over E and $\int_E (\alpha f + \beta g) = \alpha \int_E f + \beta \int_E g$
- 20)
 a) Let E be of finite measure. Suppose the sequence of functions $\{f_n\}$ is uniformly integrable over E. If $\{f_n\} \to f$ pointwise a.e. on E, prove that f is integrable over E and $\lim_{n \to \infty} \int_{E} f_n = \int_{E} f$
 - b) Prove that a function f is of bounded variation on the closed, bounded interval [a, b] if and only if it is the difference of two increasing functions on [a, b]
- Let the function f be continuous on the closed, bounded interval [a, b]. Prove that f is absolutely continuous on [a, b] if and only if the family of divided difference functions $\{Diff_h f\}_{0 < h < 1}$ is uniformly integrable over [a, b].

1M2A23085	1M2	A23	085
-----------	-----	-----	-----

(Pages: 2)

Reg. No:	٠.	٠.	٠	٠.	•	 		٠	*	
Name:										

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester M.Sc Mathematics Degree Examination, April 2023 MMT2C08 - Topology

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part A

Answer all questions. Each question carries 1 weightage.

- 1. Define the Sierpinski space. Is it a topology not induced by any metric.
- 2. Define Base for topology. Write a sub-base for the set of real numbers under usual topology.
- 3. Prove that a second countable space always contains a countable dense subset.
- 4. Prove that a subset of a topological space is open if and only if it is a neighborhood of each of its points.
- 5. Define weak topology determined by a family of functions.
- 6. Show that components are closed sets.
- 7. Give an example of a topological space that is T_1 but not T_2 .
- 8. Define standard base and standard sub-base for the product topology.

(8x1 = 8 weightage)

Part B

Answer any two questions from each unit, Each question carries 2 weightages.

UNIT-I

- 9. Let X be a set and \mathfrak{D} a family of subsets of X. Then prove that there exists a unique topology \mathcal{T} on X, such that it is the smallest topology on X containing \mathfrak{D} .
- Prove that if a space is second countable then every open cover of it has a countable subcover.
- 11. Prove that composition of continuous functions is continuous.

- 12. Define divisible topological property. Prove that the property of being a discrete space is divisible.
- 13. What is mean by a Lebesgue number. Prove that every continuous image of a compact space is compact.
- 14. Let C be a collection of connected subsets of a space X such that no two members of C are mutually separated. Then prove that $\bigcup_{C \in C} C$ is also connected.

UNIT-III

- 15. Prove that the intersection of any family of boxes is a box and the intersection of finite number of large boxes is a large box.
- 16. If the product is non-empty, then prove that each co-ordinate space is embeddable in it.
- 17. Let $X = \prod_{i \in I} X_i$, each X_i being a topological space. Suppose $\{x_n\}$ is a sequence in X and that $x \in X$. Then prove that $\{x_n\}$ converges to x iff for each $i \in I$, the sequence $\{\pi_i(x_n)\}$ converges to $\pi_l(x)$ in X_l .

(6x2 = 12 weightages)

Part C

Answer any two questions. Each question carries 5 weightages.

- 18. (a) Let (X,T) be a topological space and S a family of subsets of X. Then prove that S is a sub-base for T if and only if S generates T.
 - (b) Prove that metrisability is a hereditary property.
- 19. (a) Prove that a subset A of a space X is dense in X iff for every nonempty open subset Bof X, $A \cap B \neq \emptyset$.
 - (b) For a subset A of a space X, prove that $\bar{A} = A \cup A'$.
- 20. (a) Prove that every continuous real valued function on a compact space is bounded and
 - (b) Show that every second countable space is first countable. Is the converse true?
- 21. (a) Prove that in a Hausdorff space, limits of sequences are unique.
 - (b) Show that regularity is a hereditary property.

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester M.Sc Mathematics Degree Examination, April 2023 MMT2C09 - ODE and Calculus of Variations

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part A

(Answer all questions. Each question carries 1 weightage)

- 1. Find a power series solution of the equation y' = y.
- 2. Verify that $p_n(-1) = (-1)^n$, where $p_n(x)$ is the n^{th} degree Legendre polynomial.
- 3. If y(x) be a nontrivial solution of equation y'' + q(x)y = 0 on a closed interval [a, b], then y(x) has atmost a finite number of zeros in this interval.
- 4. Describe the phase portrait of the system: $\frac{dx}{dt} = 1, \frac{dy}{dt} = 2$.
- 5. Using Picard's method, find the solution of y' = y with the initial condition y(0) = 1.
- 6. Prove that $\frac{d}{dx}[x^pJ_p(x)] = x^pJ_{p-1}(x).$
- 7. Determine whether the function $2x^2 3xy + 3y^2$ is positive definite, negative definite or neither.
- 8. Show that $f(x,y) = x^2|y|$ satisfies a Lipschitz condition on the rectangle $|x| \le 1$ and $|y| \le 1$.

 $(8 \times 1 = 8 \text{ weightage})$

Part B

(Answer any two questions from each unit. Each question carries 2 weightage)

Unit I

- 9. Derive the orthogonality property of the Legendre Polynomial.
- 10. Find the general solution of y'' + xy' + y = 0.
- 11. Find two independent Frobenius series solutions of the equation

$$2xy'' + (3-x)y' - y = 0.$$

12. If W(t) is the Wronskian of the two solutions of the homogeneous linear system

$$\begin{cases} \frac{dx}{dt} = a_1(t)x + b_1(t)y\\ \frac{dy}{dt} = a_2^{\bullet}(t)x + b_2(t)y \end{cases}$$
, then $W(t)$ is either identically zero or nowhere zero on $[a,b]$.

- 13. State Bessel Expansion theorem and compute the Bessel series of the function f(x) = 1 for the interval $0 \le x \le 1$ interms of the function $J_0(\lambda_n x)$, where λ_n 's are the positive zeros of $J_0(x)$.
- 14. Determine the nature and stability properties of the critical point (0,0) for the System $\frac{dx}{dt} = 4x 3y$; $\frac{dy}{dt} = 8x 6y$.

Unit III

- 15. State and Prove Sturm comparison theorem.
- 16. Formulate the problem of finding the curve of quickest descent.
- 17. Find the exact solution of the initial value problem y' = 2x(1+y), y(0) = 0. Starting with $y_0(x) = 0$, calculate $y_1(x)$, $y_2(x)$, $y_3(x)$, $y_4(x)$ and compare these results with the exact solution.

 $(6 \times 2 = 12 \text{ weightage})$

Part C (Answer any two questions. Each question carries 5 weightage)

18. Derive the Rodrigue's formula for Legendre polynomials

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n.$$

- 19. If there exists a Liapunov function E(x,y) for the autonomous system, then the critical point (0,0) is stable. Furthermore, if this function has the additional property that the function $\frac{\partial E}{\partial x}F + \frac{\partial E}{\partial y}G$ is negative definite, then the critical point (0,0) is asymptotically stable.
- 20. State and Prove Picard's theorem.
- 21. For the system $\frac{dx}{dt} = -x$, $\frac{dy}{dt} = 2x^2y^2$
 - (i) Find the critical points.
 - (ii) Find the differential equation of the paths.
 - (iii)Solve this equation to find the paths

tM2A23087

(Pages: 3)

Reg. No:....

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester M.Sc Mathematics Degree Examination, April 2023 MMT2C10 - Operations Research

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part A (Short Answer Questions) (Answer all questions. Each question has weightage 1)

- Prove that the sum of two convex functions is a convex function. 1.
- What is meant by degeneracy in a linear programming problem? 2.
- Solve graphically the following linear programming problem: 3. Minimize $20x_1 + 50x_2$ Subject to $x_1 + 2x_2 \ge 10, 3x_1 + 4x_2 \le 24, x_1 \ge 0, x_2 \ge 0$
- Prove that the dual of the dual is the primal. 4.
- What type of problems can be solved by the dual simplex method? Explain. 5.
- Formulate the transportation problem as a linear programming problem. 6.
- Define a chain in a graph. When does a chain become a cycle? 7.
- 8. Describe the rectangular game as a linear programming problem.

 $(8 \times 1 = 8 \text{ weightage})$

Part B

(Answer any two questions from each unit. Each question carries weightage 2)

Unit I

- 9. Let $X \in E_n$ and f(X) = X'AX be a quadratic form. If f(X) is positive semidefinite, then show that f(X) is a convex function.
- 10. Prove that a basic feasible solution of the LP problem is a vertex of the convex set of feasible solutions.
- 11. Solve the following LP problem by simplex method:

Maximize $x_1 + x_2 + 3x_3$

Subject to

 $3x_1 + 2x_2 + x_3 \le 3$ $2x_1 + x_2 + 2x_3 \le 2$

 $x_1, x_2, x_3 \ge 0$

- Prove that the optimal value of f(X) of the primal, if it exists, is equal to the optimal 12. value of $\emptyset(Y)$ of the dual.
- Prove that the transportation problem has a triangular basis. 13.
- Solve the following transportation problem for minimum cost starting with the 14. degenerate solution $x_{12} = 30, x_{21} = 40, x_{32} = 20, x_{43} = 60.$

	D_1	D_2	D_3	
01	4	5	2	30
02	4	1	3	40
03	3	6	2	20
04	2	3	7	60
	40	50	60	

Unit III

- Describe the algorithm for finding the minimum path between two vertices in a graph 15. when all arc lengths are non-negative.
- Solve the following LP problem by the cutting plane method: 16.

Minimize
$$4x_1 + 5x_2$$

Subject to

$$3x_1 + x_2 \ge 2$$

$$x_1 + 4x_2 \ge 5$$

$$3x_1 + 2x_2 \ge 7$$

 x_1, x_2 non-negative integers.

Let f(X,Y) be such that both $\max_X \min_Y f(X,Y)$ and $\min_Y \max_X f(X,Y)$ exist. Then 17. prove that $\max_X \min_Y f(X, Y) \le \min_Y \max_X f(X, Y)$.

$$(6 \times 2 = 12 \text{ weightage})$$

Part C

(Answer any two from the following four questions. Each question carries weightage 5) Solve the following LP problem by big M method: 18.

Minimize
$$2x_1 - 3x_2 + 6x_3$$

Subject to $3x_1 - 4x_2 - 6x_3 \le 2$

$$2x_1 + x_2 + 2x_3 \ge 11$$

$$x_1 + 3x_2 - 2x_3 \le 5$$

$$x_1, x_2, x_3 \ge 0$$

- (a) Prove that if the k^{th} constraint of the primal is an equality, then the dual variable y_k is unrestricted in sign.
 - (b) Solve the following LP problem by dual simplex method:

Minimize
$$2x_1 + 3x_2$$
Subject to
$$2x_1 + 3x_2 \le 30$$

$$x_1 + 2x_2 \ge 10$$

$$x_1, x_2 \ge 0$$

Solve graphically the LP problem: Maximize $f = 4x_1 + 8x_2$ subject to

 $x_1 + 2x_2 \ge 20$, $2x_1 + 2x_2 \le 100$, $x_1 - 3x_2 \le 0$, $4x_1 - x_2 \ge 0$, $x_1 \ge 0$, $x_2 \ge 0$. Also analyse graphically how the optimal solution is modified when the following changes are introduced in the problem, (one at a time);

(i) objective function is replaced by $8x_1 + 4x_2$

b

- (ii) a new constraint $2x_1 + x_2 \ge 10$ is introduced.
- 21. (a) State and prove the fundamental theorem of rectangular games.
 - (b) Solve graphically the game whose payoff matrix is $\begin{bmatrix} 2 & 7 \\ 3 & 5 \\ 11 & 2 \end{bmatrix}$

 $(2 \times 5 = 10 \text{ weightage})$