7	R	1 1	N7	3	3	05	
_		.	1.	-	-	ve	,

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester Integrated M.Sc Geology Degree Examination, November 2023 PHY1IC01 – Properties of Matter & Thermodynamics

(2022 Admission onwards)

Time: 2 hours

Max. Marks: 60

Section A- Short Answer Type

(Answer all questions in two or three sentences, each correct answer carries a maximum of 2 marks, Overall Ceiling 20)

- 1. Mention any one application of Poisson's ratio.
- 2. What is yield point?
- 3. What is flexural rigidity?
- 4. What is geometrical moment of inertia?
- 5. Give some examples for surface tension phenomenon.
- 6. Explain the effect of impurities on surface tension.
- 7. What are the SI and CGS units of coefficient of viscosity.
- 8. An ideal gas at 1 atm is slowly compressed to $\frac{1}{8}$ of its initial volume. Find the resulting pressure
- 9. What are the significances of first law of thermodynamics?
- 10. State the Kelvin-Planck statement of second law of thermodynamics
- 11. Absolute entropy of a system cannot be determined. Only the change in entropy can be calculated- Explain
- 12. Explain the effect of pressure on boiling point of water.

(Ceiling-20)

Section B- Paragraph/ Problem Type (Answer all questions in a paragraph of about half a page to one page, each correct answer carries a maximum of 5 marks)

- 13. Calculate the force required to stretch a 2cm diameter steel rod by 0.01 percentage. Young's modulus of steel is $2 \times 10^{11} \text{N/m}^2$.
- 14. Explain the molecular theory of surface tension.
- 15. A steel wire of 1mm radius is bent to form a circle of 10cm radius. What is the bending moment and the maximum stress. Young's modulus is $2 \times 10^{11} \text{ N/m}^2$.
- 16. What amount of energy will be liberated if 1000 droplets of water each $10^{-6}cm$ in diameter coalesce to form one large spherical drop.

 Surface Tension of water = 0.075N/m.
- 17. A Carnot engine working between two temperatures has an efficiency 12.5%. If the temperature of sink is reduced by 95°C, its efficiency is doubled. Find the temp of source and sink.
- 18. An ice block of mass 12 Kg is put into a large lake of water at 20°C so that the final temp: is 20°C. Find the change in entropy of ice, lake water and universe?

 (Cv of water = 4200 J/ Kg, Latent heat of ice =3.36x10⁵ J/Kg)
- 19. What is available energy? Explain how available energy is related with entropy.

(Ceiling- 30)

Section C- Essay Type Answer any one question. Answer carries 10 marks

- 20. What is a beam? Derive an expression for bending moment of a beam.
- 21. What is a heat engine? With the help of Carnot cycle explain and derive equation for efficiency of a carnot engine.

(1x10=10 marks)

21	A 1	N	77	2	06
21	11	14	40	J	vv

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Degree Examination, November 2023

MPH1C01 - Classical Mechanics

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Section A- Short Answer Questions (Answer all questions, Each carry weightage 1)

- 1. Is Lagrangian formulation more advantageous than Newtonian formulation? Why?
- 2. Determine $[p_x, L_z]$
- 3. What is non holonomic constraint? Give an example.
- 4. Differentiate between stable and unstable limit cycle.
- 5. Distinguish between space fixed and body fixed co-ordinate systems.
- 6. What are fundamental Poisson's brackets?
- 7. Define Hamiltonian. When it is equal to total energy of the system?
- 8. Explain principle of least action.

 $(8 \times 1 = 8 \text{ Weightage})$

Section B – Essay Questions (Answer any two questions, Each carry weightage 5)

- Give an account of Hamilton Jacobi theory and solve harmonic oscillator problem using Hamilton Jacobi equation.
- 10. Discuss the force free motion of a symmetric top and hence obtain an equation for its period.
- 11. Explain free vibration of linear triatomic molecule.
- Considering the scattering of charged particles as a central force problem, obtain an expression for the scattering cross section.

 $(2 \times 5 = 10 \text{Weightage})$

Section C – Problem Questions (Answer any four questions, Each carry weightage 3)

- 13. Prove that the transformations $Q = \tan^{-1}(\frac{q}{p})$ and $P = \frac{1}{2}(p^2 + q^2)$ are canonical.
- 14. Find the time period of oscillation of a compound pendulum by Hamilton's method.
- 15. Show that Poisson bracket is invariant under canonical transformation.
- 16. Deduce the Hamilton's canonical equations from variation principle.
- 17. Solve Kepler problem using Hamilton Jacobi method.
- 18. Prove that shortest distance between two points in space is straight line.
- 19. Show that Poisson bracket of two constants of motion itself a constant of motion

 $(4 \times 3 = 12 \text{Weightage})$

2M	1N2	33	07

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Physics Degree Examination, November 2023

MPH1C02 - Mathematical Physics - I

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Section A

(8 Short questions, each answerable within 7.5 minutes) (Answer all questions, each carry weightage 1)

- 1. What is a solenoidal field? Explain using an example.
- 2. Show that the eigenvalues of self-adjoint differential equations are real.
- 3. Define the Beta function. Prove that $\beta(m,n) = \beta(n,m)$.
- What is meant by boundary condition? Explain the three forms Cauchy, Dirichlet, and Neumann conditions.
- 5. Explain the outer product of two matrices.
- 6. Define Fourier transform of a function. Explain its physical significance.
- 7. Define unitary matrix. Explain unitary transformation.
- 8. Briefly explain Poisson distribution.

 $(8 \times 1 = 8 weightage)$

Section B

(4 Essay questions, each answerable within 30 minutes)

(Answer ANY TWO questions, each carry weightage 5)

- Discuss the separation of variable method to solve the partial differential equations taking Helmholtz equation in spherical polar coordinates as an example.
- 10. Explain the diagonalization of the matrix $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$.
- 11. Using orthogonal curvilinear coordinates, derive the expression for the Laplacian operator. Hence express the Laplacian in cylindrical coordinates.
- 12. What are Legender's polynomials? What is its generating function? State and prove orthogonality condition.

 $(2 \times 5 = 10 weightage)$

Section C

(7 Problem questions, each answerable within 15 minutes) (Answer ANY FOUR questions, each carry weightage 3)

13. Explain Gram-Schmidt orthogonalization procedure for the vectors

$$V_0 = (1,1), V_1 = (1,-2).$$

14. Show that Hermite polynomials satisfy the relation

$$H_{n+1}(x) = 2xH_n(x) - 2nH_{n-1}(x).$$

- 15. Show that $2J'_n(x) = J_{(n-1)}(x) J_{(n+1)}(x)$ for Bessel functions.
- 16. Show that the scalar product is invariant under rotations.
- 17. The force field acting on a two-dimensional linear oscillator is described by

 $\vec{F} = -kx\hat{\imath} - ky\hat{\jmath}$. Compare the work done moving against this force field when going from (1,1) to (4,4) by the following straight-line paths:

(a)
$$(1,1) \rightarrow (4,1) \rightarrow (4,4)$$

(b)
$$(1,1) \rightarrow (1,4) \rightarrow (4,4)$$

18. Solve the damped harmonic oscillator equation

$$mX''(t) + bX'(t) + kX(t) = 0,$$

for initial position x0 and initial velocity zero using Laplace transform, and

- (a) $b^2 = 4km$ (Critically damped)
- (b) $b^2 > 4km$ (Overdamped).
- 19. Show that $\Gamma\left(\frac{1}{2}-n\right)\Gamma\left(\frac{1}{2}+n\right)=(-1)^n\pi$ where n is an integer.

 $(4 \times 3 = 12 weightage)$

2M1N2330	8

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Degree Examination, November 2023

MPH1C03 – Electrodynamics & Plasma Physics

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Section A (Answer all questions, each question carries 1 weightage)

- 1. Write the differential form of four Maxwell's equations and explain the terms
- 2. What are electric and magnetic potentials?.
- 3. What do you mean by a plane wave. Write the equation for it.
- 1. How is power flow and Poynting vector related?
- 5. What are transmission lines. Give their two charecteristics.
- 6. What are cavity resonators and wave guides?
- What is Plasma state. Give four examples in daily life where plasma state is observed.
- 3. What is Debye shielding?

 $(8 \times 1 = 8 \text{ weightage})$

Section B (Answer any two. Each carries 5 weightage)

- 9. Obtain the wave equations for potentials and find the solutions for them
- 10. Explain the behavior of plane waves in a lossless media and hence derive an expression for the intrinsic impedance for the free space.
- Discuss the motion of TEM wave along a parallel plate transmission line. Obtain expressions for inductance and capacitance per length
- 2. Obtain an expression for electromagnetic field tensor.

 $(2 \times 5 = 10 \text{ weightage})$

Section C

(Answer any four questions. Each carries 3 weightage)

13. A sinusoidal electric intensity of amplitude 250 V/m and frequency 1 GHz exists in a lossy dielectric medium that has relative permittivity of 2.5 and loss tangent of 0.001. Find the average power dissipated in the medium per cubic meter.

- 14. Obtain electromagnetic boundary conditions
- 15. Prove that a linearly polarised plane wave can be resolved into a right circular and left circular polarised waves of equal amplitude
- 16. A narrow band signal propagates in a lossy dielectric medium which has a loss tangent 0.2 a 550 kHz the carrier frequency of the signal. The dielectric constant is 2.5. Find α and β.
- 17. Determine the wave impedance and guide wavelength at a frequency equal to one half of the cutoff frequency in a wave guide for TM and TE modes.
- 18. Obtain the four vector form of Lorentz gauge and wave equations for potentials
- 19. If B = 0.32 T and $n = 10^{18}$ /m³ show that plasma frequency is approximately equal to cyclotron frequency for electrons

 $(4 \times 3 = 12 \text{ weightage})$

28	4 1 N	177	20	n
211	111	123	20	>

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Physics Degree Examination, November 2023

MPH1C04 - Electronics

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Section A

(Answer All questions, each carry Weightage 1)

- Define common mode rejection ratio.
- 2. Draw the circuit of an emitter-coupled differential amplifier.
- Define scale changer.
- 4. Differentiate between low pass and high pass filters.
- 5. What is meant by a latch?
- 6. Discuss the working of charge coupled devices.
- 7. Compare BJT and FET.
- 8. Define efficiency of a solar cell.

(8x1 = 8 Weightage)

Section B (Answer any two questions, each carry weightage 5)

- Draw a neat circuit diagram of opamp integrator and differentiator. Derive the expression for output voltage in each case
- 10. With a neat diagram and truth table explain the working of a master slave JK flip flop.
- 11. What are Field effect transistors? Explain the construction, working and characteristics of an n channel JFET.
- Explain the principle of a laser. Discuss the construction and operation of a semiconductor laser.

(2x5 = 10 Weightage)

Section C (Answer any four questions, each carry weightage 3)

- 13. Draw a neat circuit diagram of a voltage-divider bias arrangement of an FET.
- 14. A non-inverting amplifier has an input offset voltage $V_{io} = 1 \mu V/^0 C$. If $V_s = 0$, determine output voltage. Let input resistance, $R = 1 K \Omega$ and feedback resistance, $R_f = 10 K \Omega$.
- 15. Write a short note on Lead compensation.
- Using JK fip-flops, design a 4-bit shift register that moves incoming data from left to right.
- 17. Write a short note on LDR.
- 18. Determine the magnitude of g_m for a JFET with $I_{DSS} = 8mA$ and $V_P = -4V$ at (i) $V_{GS} = -0.5V$ and (ii) $V_{GS} = -2.5V$.
- Draw the logic symbol, truth table and waveform of Mod-8 binary counter with parallel clock input.

(4x3 = 12 Weightage)