2B3	N21	339

	-
(Page	2)
(Pages	4)

Dac	Ma.													
Reg.	110	•••	• •	• •	•	• •		٠		٠	٠			

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester B.Sc Mathematics Degree Examination, November 2021 BST3C03 – Probability Distributions and Sampling Theory

(2019 Admission onwards)

Time: 2 hours

Max. Marks: 60

Part A Each question carries 2 Marks. Maximum Marks that can be scored in this Part is 20

- 1. Define standard normal distribution.
- 2. What is the mgf of $N(\mu, \sigma)$?
- 3. Define log normal distribution.
- 4. State Central limit theorem.
- 5. Explain the term convergence in probability.
- 6. Distinguish between parameter and statistic.
- 7. How will you select a stratified random sample?
- 8. Derive the mean of chisquare distribution.
- 9. Define F statistic and write down its pdf.
- 10. What is standard error?
- 11. Define beta distribution of first kind.
- 12. State and prove additive property of two binomial random variables.

Part B Each question carries 5 Marks. Maximum Marks that can be scored in this Part is 30

- 13. Establish the recurrence relation for the moments of Poisson distribution.
- 14. Show that a linear combination of independent normal variates is also a normal variate?
- 15. State and establish Bernoulli's law of large numbers.
- 16. A random variable X has mean 50 and variance 100. Use Chebysheff's inequality to find a lower bound to the probability P(|X-50| < 20).
- 17. Explain a systematic sample.
- 18. For sampling from a heterogeneous population which method do you prefer? Why?
- 19. Define a student's t statistic. Derive its probability density function.

Part C Answer any one question and carries 10 Marks.

- 20. a)Explain convergence in probability.
 - b) State and establish Weak law of large numbers for iid random variables.
- 21. Explain the different methods of sampling.

 $(1 \times 10 = 10 \text{ Marks})$

2B3	NO	121	n
4DJ	112	121	v

(Pages: 2)	Reg. No:
	Nama:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester B.Sc Degree Examination, November 2021 BMT3B03 - Theory of Equations and Number Theory

(2019 Admission onwards)

Time: 2 ½ hours

Part A All questions can be attended. Each questions carries 2 marks.

- 1. Find the product of $f(x) = x^2 x + 1$ and $g(x) = x^2 + x + 1$ By the Method of Detached coefficients.
- 2. Without actual division, Show that $2x^4 7x^3 2x^2 + 13x + 6$ is divisible by $x^2 5x + 6$
- 3. Write a bi-quadratic equation with the roots i, -i, 1+i, 1-i.
- 4. Find the rational root of the function $6x^3 x^2 + x 2 = 0$.
- 5. Prove that there is no positive integer between 0 and 1.
- 6. Define the number sequence 3, 8, 13, 18, 23, recursively.
- 7. State and prove the Pigeonhole Principle.
- 8. Let f be a function defined recursively by $f(x) = \begin{cases} 1 & \text{if } 3 | n \\ f(n+1) & \text{otherwise} \end{cases}$. Then find f(16).
- 9. Express the gcd of the pair of numbers 18, 28 as a linear combination of the numbers.
- 10. Prove or Disprove: Any two consecutive Fibonacci numbers are relatively prime.
- 11. Find the canonical decomposition of 1863.
- 12. Determine whether the linear congruence $12x \equiv 18 \pmod{15}$ is solvable.
- 13. What is a pseudoprime. Give an example.
- 14. If $n = 2^k$, then prove that $\varphi(n) = n/2$.
- 15. Prove or disprove: If the congruence $x^2 \equiv 1 \pmod{m}$ has exactly two solutions, then prove that m is a prime.

(Ceiling =25Marks)

Max. Marks: 80

Part B All questions can be attended. Each questions carries 5 marks.

- 16. Solve $20x^3 30x^2 + 12x 1 = 0$, Given that 1/2 is a root
- 17. Solve the cubic equation $x^3 6x 6 = 0$
- 18. State and prove the Second Principle of Mathematical Induction.
- 19. Find the number of positive integers \leq 3000 and divisible by 3,5 or 7.
- 20. Two positive integers, a and b are relatively prime if and only if there are integers α and β such that $\alpha a + \beta b = 1$.
- 21. State Dirichlet's Theorem. Using this theorem, prove that there are infinitely many primes of the form 2n + 3.
- 22. Find the remainder when 7¹⁰⁰¹ is divided by 17.
- 23. State and prove Euler's Theorem.

(Ceiling =35Marks)

Part C (Essay type) Answer any two questions Each question carries 10 marks

- 24. (a) Solve the cubic equation $x^3 6x 6 = 0$
 - (b) Show that $\sqrt[3]{\sqrt{5}+2} \sqrt[3]{\sqrt{5}-2} = 1$
- 25. State and prove Division algorithm for integers.
- 26. (a) Explain the Euclidean algorithm for any two positive integers a and b.
 - (b) Using the euclidean algorithm, express (4076, 1024) as a linear combination of 4076 and 1024.
- 27. (a) State and prove Fermat's Little Theorem and hence deduce that $a^p \equiv a \pmod{p}$.
 - (b) Find the remainder when 24¹⁹⁴⁷ is divided by 17.

 $(2 \times 10 = 20 Marks)$

(Pages: 2)

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester B.Sc Degree Examination, November 2021 BPH3C03 – Mechanics, Relativity, Waves & Oscillations

(2019 Admission onwards)

Time: 2 hours

Max. Marks: 60

Section A

Answer all questions. Answer in two or three sentences. Each correct answer carries a maximum of two marks.

- 1. Explain what is inertial frames
- 2. Show that even if no external force is acting, a particle will experience a force in an accelerated frame
- 3. What is meant by centrifugal force?
- 4. State work energy principle
- 5. Show that the curl of a conservative force vanishes
- 6. What are non conservative forces? Give two examples.
- 7. Explain proper time & proper length.
- 8. Give the relativistic relation between momentum and energy.
- 9. Write the expression for mass energy relation and explain the symbols.
- 10. What is the Schrodinger's postulate?
- 11 Graphically represent the variation of P.E. and K.E. of a simple harmonic oscillator. When are they equal?
- 12 Explain what is meant by an harmonic oscillations.

(Ceiling: 20 Marks)

Section B (Paragraph/Problem)

(Answer all questions in a paragraph of about half a page to one page. Each correct answer carries a maximum five marks)

- 13. A mass of 1 kg is thrown horizontally due north with a velocity 500m/s at latitude 30°. Obtain the magnitude of Coriolis force.
- 14. Show that the law of conservation of linear momentum is invariant under Galilean transformation.
- 15. Form the potential energy function $U = U_0 + Px + Qx^2$, find the restoring force and hence the force constant.
- 16. Find the centre of mass of a system of masses m_1 , m_2 and m_3 placed at (x_1,y_1,z_1) , (x_2,y_2,z_2) and (x_3,y_3,z_3) respectively.
- 17. Show that the law of addition of velocity predicts the constant value of the velocity of light in all the inertial frames.
- 18. Define wave function. Give its significance and write conditions for a wave function to be well behaved.
- 19. A particle of mass 1 g moves in a P.E. well given by $U = U_0 + 6x + x^2$. Find

 - (a) the force constant (b) the frequency of oscillation and
 - (c) the position of stable equilibrium.

(Ceiling:30Marks)

Section C (Essay)

Answer anyone in about two pages .Each question carries ten marks)

- 20. Derive Galilean transformations. Show that length and acceleration are invariant under Galilean transformation.
- 21. Explain the principle of rocket. Derive expression for the final velocity of rocket.

(1x10=10 Marks)