19

7	D	7	A	17	13	48
2	B	-	T.	2.00	10	10

(Pages:2)

Reg.	N	0:			*					*	* (•	*//	*	*	
Nam	e:							ı								

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester BSc Degree Examination, March/April 2021 BCH2B02 - Theoretical and Inorganic Chemistry - II

(2020 Admission onwards)

Time: 2 hours

Max. Marks: 60

Section A (Short answers) (Answer questions up to 20 marks. Each question carries 2marks)

- 1. Calculate the mass of a particle moving with a velocity of 10⁻⁵ m/s⁻¹ and having a wavelength 7.3x10⁻⁶ m.
- 2. Draw the radial distribution curves for 3p and 3d orbitals.
- 3. How can we determine the temperature inside a star?
- 4. Explain the effect of intensity and frequency of incident light on photoelectric effect.

 Mention two practical applications of photoelectric effect.
- 5. Draw the shape of *d*-orbitals.
- 6. Explain the conditions for a well behaved wave function.
- 7. If the length of hexatriene is 0.73 nm, calculate the wavelength of radiation required for the excitation.
- 8. The 19th electron in potassium atom goes to 4s orbital and not to 3d orbital. Justify
- 9. Explain the importance of Born-Oppenheimer approximation in quantum mechanics.
- 10. Give reasonable explanation for the stability of half filled and fully filled orbitals.
- 11. $1s^2$, $2s^2$, $2p^6$ electronic configuration exists but not $1s^2$, $2s^3$, $2p^5$. Justify
- 12. Calculate the uncertainty in the velocity of a particle of mass 5 x 10⁻²⁷ kg with uncertainty in position is 10⁻⁸ cm.

[Ceiling of marks: 20]

Section B (Paragraph) (Answer questions up to 30 marks. Each question carries 5 marks)

- 13. Calculate the wavelength of the second line in the Paschen series and show that this line lies in the near IR region. $(R_{\rm H} = 109677.57 \text{ cm}^{-1})$
- 14. Elucidate the importance of Stern-Gerlach experiment.
- 15. Prove that the product of two linear operators is another linear operator.

- 16. Which of the following functions are eigen functions of d^2/dx^2 ? (a) e^x ; (b) x^2 ; (c) $\sin x$; (d) $3\cos x$; (e) $\sin x + \cos x$. Give the eigen value.
- 17. With the help of molecular orbital theory prove that Be2 does not exist.
- 18. Give explanation for the paramagnetic nature of NO.
- 19. Identify the bond angles in SnCl₂, NH₃ and ClF₃

[Ceiling of marks: 30]

Section C (Essay) (Answer any one. Each question carries 10 marks)

- 20. Give expression for the Schrodinger wave equation of particle in one dimensional box and origin of quantum numbers n from the equation.
- 21. Explain the shape and hybridization of CH₄, PCl₅, SF₆ and IF₇.

 $[1 \times 10 = 10]$

(Pages: 2)

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester B.Sc Degree Examination, March/April 2021

BMT2C02 - Mathematics - 2

(2020 Admission onwards)

Time: 2 hours

Max. Marks: 60

PART A

Answer all questions. Each question carries 2 marks.

Maximum marks from this section is 20.

- 1. Convert the polar coordinate $(4, -\pi)$ into cartesian coordinate.
- 2. Differentiate $\cosh^{-1} x^2$
- 3. Consider the curve $x = 3 \cos t$, $y = \sin t$. Find the points where the tangent is horizontal.
- 4. Find $\lim_{n\to\infty} \frac{3n^2+1}{n^2+n}$
- 5. Evaluate $\int_0^{\frac{\pi}{2}} \cos x \ dx$ by using Trapezoidal rule with n = 4.
- 6. Show that the series $\sum_{i=1}^{\infty} 1 + \frac{1}{2^i}$ diverges.
- 7. Test the convergence of $\sum_{n=1}^{\infty} \frac{3^n}{n^2}$.
- 8. Give an example of a vector space. Explain your answer
- 9. Check whether the set of vectors (3,5), (2,10) are linearly independent or not.
- 10. Find the inverse of the matrix $\begin{bmatrix} 1 & 3 \\ 4 & 10 \end{bmatrix}$
- 11. Verify that the matrix $A = \begin{bmatrix} cost & sint \\ -sint & cost \end{bmatrix}$ is orthogonal.
- 12. Evaluate the determinant of the matrix $A = \begin{bmatrix} 6 & 5 & 0 \\ -1 & 8 & -7 \\ -2 & 4 & 0 \end{bmatrix}$

PART B

Answer all questions. Each question carries 5 marks

Maximum mark from this section is 30

- 13. Show that $\sinh^2 x = \frac{\cosh 2x 1}{2}$
- 14. Find the length of the curve $f(x) = (x-1)^{\frac{3}{2}} + 2$ on [1, 2].

- 15. (a) Write Alternating series test.
 - (b) Show that the series $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \frac{1}{5} \cdots$ converges.
- 16. Find the Taylor series generated by $f(x) = e^x$ at $x_0 = 0$.
- 17. Let $B = \{u_1, u_2\}$, where $u_1 = (3,1), u_2 = (1,1)$ is a basis for R^2 . Find an orth basis for R^2 using the Gram Schmidt orthonormalization process.
- 18. Solve the linear system

$$x_1 + 2x_2 - x_3 = 0$$
$$2x_1 + x_2 + 2x_3 = 9$$
$$x_1 - x_2 + x_3 = 3$$

Using Gaussian elimination.

19. Find the rank of the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 4 \\ 1 & 4 & 1 \end{bmatrix}$

PART C

Answer any ONE question. One question carries 10 marks

- 20. (a) Graph the polar curve $r = \cos 2\theta$.
 - (b) Find the area enclosed by the cardioids, $r = 1 + \cos \theta$, $0 \le \theta \le 2\pi$.
- 21. Find the eigen values and corresponding eigen vectors of the matrix $A = \begin{bmatrix} 7 \\ 3 \end{bmatrix}$.

 Also verify Cayley Hamilton theorem.

35

2B2M21424

ial

(Pages: 2)

Reg. No:....

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester B.Sc Degree Examination, March/April 2021 BPH2C02 - Optics, Laser, Electronics & Communication

(2020 Admission onwards)

Time: 2 hours

Max. Marks: 60

Section A

Answer all questions. Answer in two or three sentences. Each correct answer carries a maximum of two marks.

- 1. What are coherent sources? Give an example.
- 2. What are Newton's rings? Give two of its uses.
- 3 State and explain grating law.
- 4. Distinguish between Fraunhofer and Fresnel's diffraction.
- 5. What is a half wave plate? What is its use?
- 6. Draw the intensity distribution curve of the single slit diffraction pattern
- 7. Obtain the relation between current amplification factors a and b
- 8. Draw the diagram of exclusive OR gate. Also draw its truth table.
- 9. What is negative feedback? What is its need?
- 10. What is stimulated emission?
- 11. Distinguish between e rays and o rays.
- 12. What is specific rotation?

(Ceiling: 20 Marks)

Section B (Paragraph/Problem) (Answer all questions in a paragraph of about half a page to one page. Each correc carries a maximum five marks)

- 13. What are constructive and destructive interferences? Give the conditions.
- 14. In Newton's Ring experiment the radius of curvature of the curved side of a plan lens is 100cm. Wavelength of light used is 6x10⁻⁵ cm. What will be the radius of 10th brightrings?
- 15. If the critical angle of glass air boundary is 42°, calculate the polarising angle for
- 16. What are the conditions for brightness and darkness of normal incidence of light plane film producing interference?
- 17. Write a short note on Ruby laser.
- 18. How will you distinguish between planes, elliptically and circularly polarised ligh
- 19. Explain the working of a transistor oscillator.

(Ceiling:30

Section C (Essay) Answer anyone in about two pages .Each question carries ten marks)

- Give the theory of plane diffraction grating and explain how it is used to measure wavelength of light.
- Describe the principle and working of a full wave rectifier. Obtain the expression efficiency and ripple factor.

(1x10=10