(Pages: 2)

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester B.Sc Degree Examination, March/April 2021

BMT2C02 - Mathematics - 2

(2020 Admission onwards)

Time: 2 hours

Max. Marks: 60

PART A

Answer all questions. Each question carries 2 marks.

Maximum marks from this section is 20.

- 1. Convert the polar coordinate $(4, -\pi)$ into cartesian coordinate.
- 2. Differentiate $\cosh^{-1} x^2$
- 3. Consider the curve $x = 3 \cos t$, $y = \sin t$. Find the points where the tangent is horizontal.
- 4. Find $\lim_{n\to\infty} \frac{3n^2+1}{n^2+n}$
- 5. Evaluate $\int_0^{\frac{\pi}{2}} \cos x \ dx$ by using Trapezoidal rule with n = 4.
- 6. Show that the series $\sum_{i=1}^{\infty} 1 + \frac{1}{2^i}$ diverges.
- 7. Test the convergence of $\sum_{n=1}^{\infty} \frac{3^n}{n^2}$.
- 8. Give an example of a vector space. Explain your answer
- 9. Check whether the set of vectors (3,5), (2,10) are linearly independent or not.
- 10. Find the inverse of the matrix $\begin{bmatrix} 1 & 3 \\ 4 & 10 \end{bmatrix}$
- 11. Verify that the matrix $A = \begin{bmatrix} cost & sint \\ -sint & cost \end{bmatrix}$ is orthogonal.
- 12. Evaluate the determinant of the matrix $A = \begin{bmatrix} 6 & 5 & 0 \\ -1 & 8 & -7 \\ -2 & 4 & 0 \end{bmatrix}$

PART B

Answer all questions. Each question carries 5 marks

Maximum mark from this section is 30

- 13. Show that $\sinh^2 x = \frac{\cosh 2x 1}{2}$
- 14. Find the length of the curve $f(x) = (x-1)^{\frac{3}{2}} + 2$ on [1, 2].

- 15. (a) Write Alternating series test.
 - (b) Show that the series $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \frac{1}{5} \cdots$ converges.
- 16. Find the Taylor series generated by $f(x) = e^x$ at $x_0 = 0$.
- 17. Let $B = \{u_1, u_2\}$, where $u_1 = (3,1), u_2 = (1,1)$ is a basis for R^2 . Find an orth basis for R^2 using the Gram Schmidt orthonormalization process.
- 18. Solve the linear system

$$x_1 + 2x_2 - x_3 = 0$$
$$2x_1 + x_2 + 2x_3 = 9$$
$$x_1 - x_2 + x_3 = 3$$

Using Gaussian elimination.

19. Find the rank of the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 4 \\ 1 & 4 & 1 \end{bmatrix}$

PART C

Answer any ONE question. One question carries 10 marks

- 20. (a) Graph the polar curve $r = \cos 2\theta$.
 - (b) Find the area enclosed by the cardioids, $r = 1 + \cos \theta$, $0 \le \theta \le 2\pi$.
- 21. Find the eigen values and corresponding eigen vectors of the matrix $A = \begin{bmatrix} 7 \\ 3 \end{bmatrix}$.

 Also verify Cayley Hamilton theorem.

	-
(Pages	71
(Lages	4

Reg.	No:.	•							*				

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester B.Sc Degree Examination, March/April 2021 BAS2C02 – Life Contingencies

(2020 Admission onwards)

Time: 2 hours

Max. Marks: 60

PART -A(Short Answers) (Each question carries two marks .Maximum 20 Marks)

- 1. Write down an expression for t^q_x in terms of the function l_x .
- 2. In a certain population, the force of mortality equals 0.025 at all ages

 Calculate the probability that a life aged exactly 10 will die before age 12.
- 3. Calculate the following probabilities using AM92 mortality $2P_{[42]}$ and $2P_{42}$.
- 4. Define n-year tem assurance contract.
- 5. Explain critical illness assurance contracts.
- 6. Claire aged exactly 30, buys a whole life assurance with a sum assured of £50,000 payable at the end of the year of her death. Calculate the expected present value of this benefit using AM92 Ultimate mortality and 6% pa interest.
- 7. Explain temporary life annuity contracts payable in advance.
- 8. Calculate the value of $\ddot{a}_{[40]:20]}$ using AM92 mortality and 4% pa interest.
- 9. Assuming that both lives are independently subject to AM92 mortality calculate ${}_{3}P_{45:41}$ and $\mu_{38:30}$.
- 10. Define contingent assurances and reversionary annuities.
- 11. Describe t^P_{xy} and t^q_{xy}

ial

on

01

12. Express the probability $n_{q_{xy}}^2$ as an integral.

PART B (Each question carries five marks. Maximum 30 Marks)

- 13. Using ELT15 (Males) mortality, calculate the probability of a 37-year old dying between age 65 and age 75.
- 14. Calculate the value of 0.5 P₅₈ using ELT15 (Females) mortality, assuming a uniform distribution of deaths between integer ages.

- 15. Derive expected present value and variance of whole life assurance contract i payment are made at end of years.
- 16. Derive the formula for the variance of an immediate whole life annuity annually in advance.
- 17. Calculate $A_{30:\overline{25}}$ and $\bar{a}_{30:\overline{25}}$ independently, assuming AM92 mortality and interest.
 - (ii) Calculate the expected present value of a payment of £2,000 made 6 months death of a life now aged exactly 60, assuming AM92 Select mortality and interest.
- 18. Calculate:
- a) $P_{\overline{62:65}}$
- b) $_{3}q_{\overline{50:50}}$

Assuming that the two lives are both independently subject to AM92 I mortality

19. Prove that $n_{q_x}^2 = \frac{1}{2^n} q_{\overline{x}\overline{x}}$

PART –C Answer any one question and carries 10 Marks.

- 20. Calculate the value of $_{1.75}P_{45.5}$ using AM92 Ultimate mortality and assuming t
 - (i) Deaths are uniformly distributed between integer ages.
 - (ii) The force of mortality is constant between integer ages.
- 21. Derive the relationship between insurance payable at moment of death and the year of death.

(Pages: 2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester B.Sc Degree Examination, March/April 2021
BST2B02 - Bivariate Random Variables & Probability Distributions

(2020 Admission onwards)

Time: 2 1/2 hours

Max. Marks: 80

SECTION-A

Each question carries 2 Marks.

Maximum Marks that can be scored in this section is 25.

- 1. Define marginal probability density function
- 2. For a random variable X, P(X = 2) = 2P(X = 3) = P(X = 4). Find V(x)
- 3. Obtain the expected number of heads obtained in three tosses of a fair coin
- 4. The mean and variance of the binomial distribution is 8 and 3 respectively. Find the value of probability of failure
- 5. Define conditional variance of a random variable X given Y
- 6. Examine the effect of the shifting of the origin and change of scale on the m.g.f of a random variable
- 7. Define a degenerate random variable
- 8. Obtain mean deviation about mean of binomial distribution
- 9. Obtain second raw moment of discrete uniform distribution
- 10. State and prove multiplication theorem of expectation
- 11. First three raw moments of X are -2, 60 and -65. Obtain coefficient of skewness based on moments
- 12. Explain the term convergence in probability
- 13. If X is a Poisson variate and P(X = 0) = P(X = 1) = k. Find k
- 14. If X and Y are two independent random variables with mean 10 and 20 and variance 2 and 3 respectively. Find the variance of 3x + 4y
- 15. If $f(x,y) = \frac{1}{252} x^2 (y+2)$, x = 1,2,3 and y = 1,2,3,4 is the joint p.m.f of (X,Y).

Find the marginal p.m.f of X

SECTION-B

Each question carries 5 Marks.

Maximum Marks that can be scored in this section is 35.

16. If X is a random variable with the following p.m.f.

X	-2	0	2		
f(x)	1/4	1/2	1/4		

Obtain β_1 and β_2 , the measure of skewness and kurtosis

- 17. State Cauchy- Schwartze inequality. Use it to prove that $-1 \le r_{xy} \le 1$, wh Karl Pearson co efficient of correlation between any two random variables
- 18. Derive the m.g.f of a Poisson variate. Hence obtain its first four central m
- Define raw moments and central moments. State the interrelationship bet moments and central moments
- 20. For two random variables X and Y, the joint p.d.f

$$f(x, y) = 2 - x - y, 0 \le x \le 1, 0 \le y \le 1$$
. Find $cov(x, y)$.

- 21. Two unbiased dice are thrown. If X is the sum of the numbers showing up that $P\{|X-7| \ge 3\} \le \frac{35}{54}$. Compare this with the actual probability
- 22. Let X and Y be two random variables with joint p.d.f $f(x, y) = 8xy, \ 0 \le x \le y \le 1. \text{ Obtain the marginal p.d.f of } X \text{ and } Y$
- 23. Derive Poisson distribution as a limiting case of negative binomial distribu

SECTION-C (Answer any two Questions and each carries 10 marks)

- 24. (a) Explain the lack of memory property of geometric distribution
 - (b) 10% of the tools produced in a certain manufacturing process turn defective. Find the probability that in a sample of 100 tools chosen at rance
 - 2 will be defective by using (i) the binomial distribution (ii) the approximation to the binomial
- 25.Let X and Y are two random variables with joint p.d.f

$$f(x,y) = 2$$
, $0 < x < y < 1$. Find (a) correlation between X and $V(X/Y = y)$

- 26. (a) State and prove Bernoulli's law of large numbers
 - (b) Examine whether the weak law of large numbers holds good for the sequ
 - $\{X_n\}$ of independent random variables where $P\{X_n = \frac{1}{\sqrt{n}}\} = \frac{2}{3}$ and $P\{X_n = \frac{1}{\sqrt{n}}\}$
- 27. (a) If X and Y are independent Poisson variates. Obtain the conditional dist of X given X + Y

(b)Let
$$f(x, y) = \frac{1}{8}(6 - x - y), 0 \le x < 2, 2 \le y < 4$$
. Find $P(X < 1/Y < 3)$