1E	34N	12	15	29

(Pages : 2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester B.Sc Degree Examination, March/April 2021

BMT4B04 - Linear Algebra

(2019 Admission onwards)

Time: 2 1/2 hours

Max. Marks: 80

PART A

Answer all questions. Each question carries 2 marks. Maximum mark from this section is 25.

1. Find k if
$$\begin{bmatrix} k & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & -3 \end{bmatrix} \begin{bmatrix} k \\ 1 \\ 1 \end{bmatrix} = 0$$

- 2. Give an example for a system of equations with two equations and having infinite number of solutions
- 3. Define a) Row equivalent Matrices b) Elementary Matrices
- 4. Show by an example, a matrix as a transformation from R^3 to R^2
- 5. Use the arrow technique to evaluate the determinant $\begin{bmatrix} -1 & 1 & 2 \\ 3 & 0 & -5 \\ 1 & 7 & 2 \end{bmatrix}$.
- 6. Show that a singleton set with a nonzero element is always linearly independent.
- 7. Find the wroskian of the functions $f_1(x) = 1$, $f_2(x) = \sin x$, $f_3(x) = \sin(2x)$
- 8. Define a) Basis of a vector space b) Dimension of a vector space.
- 9. Write a basis for P_n , the vector space of polynomials of degree $\leq n$. What is its dimension.
- 10. Which is the standard basis of R^3 . Give an example for an infinite dimensional vector space.
- 11. Show that the vectors of the form (a, 1, 1) does not form a subspace of \mathbb{R}^3
- 12. State the Plus/Minus theorem .
- 13. Find the inverse of the matrix $\begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}$.
- 14. Show that the product of two matrices is symmetric if and only if the matrices commute.
- 15. Show that the matrices A and $P^{-1}AP$ have the same determinant.

PART B

Answer all questions. Each question carries 5 marks. Maximum mark from this section is 35.

- 16. Define a Vector Space and give two examples
- 17. Show that the intersection of subspaces of a vector space is again a subspace.
- 18. Express the vector V = (1, -2, 5) in R^3 as a linear combination of the vectors $u_1 = (1, 1, 1)$, $u_2 = (1, 2, 3)$ and $u_3 = (2, -1, 1)$
- 19. Check whether the vectors $u_1 = (1, 1, 2)$, $u_2 = (2, 3, 1)$ and $u_3 = (4, 5, 5)$ in R^3 are linearly independent or linearly dependent.
- 20. Use the inversion algorithm to find the inverse of the matrix $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$
- 21. Consider the bases B = $\{(2, 1, 1), (2, -1, 1), (1, 2, 1)\}$ and $B' = \{(3, 1, -5), (1, 1, -3), (-1, 0, 2)\}$ for R^3 . Find the transition matrix from B to B'
- 22. Find the matrix P that diagonalises the matrix $A = \begin{bmatrix} 1 & 0 \\ 6 & -1 \end{bmatrix}$
- 23. Show that, If A is an invertible matrix then $A^{T}A$ is also invertible

PART C

Answer any TWO questions. One question carries 10 marks.

- 24. State the Rank-Nullity theorem for matrices. Verify it for the matrix $\begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & 2 & 3 \\ 1 1 & 3 \end{bmatrix}$
- 25. Show that the set $\{1, t-1, (t-1)^2, (t-1)^3\}$ is a basis for $P_3(t)$, the vector space of all polynomials of degree less than or equal to 3. Find the coordinates of the vector $V = 3t^3 4t^2 + 2t 5$ relative to this basis.
- 26. If W is a subspace of a finite dimensional vector space V then prove that
 - a) W is finite dimensional
 - b) $\dim(W) \leq \dim(V)$
 - c) W = V if and only if dim (W) = dim(V)
- 27. Find the eigen values and the corresponding eigen vectors of the matrix

$$A = \begin{bmatrix} 3 & -1 & 1 \\ 7 & -5 & 1 \\ 6 & -6 & 2 \end{bmatrix}$$

(Pages: 1)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester B.Sc Degree Examination, March/April 2021

BMT4C04 - Mathematics - 4

(2019 Admission onwards)

Time: 2 hours

Max. Marks: 60

PART A

Answer all questions. Each question carries 2 marks.

Maximum mark from this section is 20.

- 1. Find the order and degree of the differential equation $\frac{d^3y}{dx^3} = \left(\left(1 + \left(\frac{dy}{dx}\right)^2\right)^{3/2}\right)$.
- 2. Give an example for a linear and a non-linear differential equation.
- 3. Define an autonomous differential equation and give an example.
- 4. Find a solution to the differential equation $x \frac{dy}{dx} = 4y$.
- 5. Find the integrating factor in simplified form for the differential equation
- $6 \frac{7y}{dx} + y \tan x = \sin 2x$
- 7. Write the general form of Bernoulli's differential equation and explain how it can be solved
- 8. Define the Dirac Delta function and WRITE its Laplace transformation.
- 9. Find the inverse Laplace transformation of $F(s) = \frac{s+1}{s^2+1}$.
- 10. State the superposition principle for homogenous differential equations.
- 11. Verify whether the functions $f_1(x) = 5$, $f_2(x) = \cos^2 x$ and $f_3(x) = \sin^2 x$ are linearly dependent or independent in the interval $(-\infty, \infty)$
- 12. Find the wroskian of the two functions $f_1(x) = e^x$, $f_2(x) = e^{-x}$

PART B

Answer all questions. Each question carries 5 marks.

Maximum mark from this section is 30.

- 13. Derive the formula for the Laplace transformation of f'''(t), where L(f(t)) = F(s) is given.
- 14. Find the Fourier cosine series of the function f(x) = x.
- 15. Using the method of separation of variables, solve the partial differential equation $\frac{\delta^2 z}{\vartheta x^2} 2\frac{\vartheta z}{\partial x} + \frac{\partial z}{\partial y} = 0$
- 16. Solve the differential equation $x^2y'' + xy' y = 0$
- 17. Show that the differential equation $(e^{2y}-y\cos(xy))dx + (2xe^{2y}-x\cos(xy)+2y)dy = 0$ is exact and hence solve the same.
- 18. Solve the initial value problem $\cos x (e^{2y}-y) \frac{dy}{dx} = e^y \sin(2x)$, y(0) = 0
- 19. Using the method of undetermined coefficients, solve $y'' + 4y = 8 x^2$.

PART C

Answer any ONE question. One question carries 10 marks.

- 20. Using the Laplace transformation, solve the initial value problem y'' y = t, y(0) = 1, y'(0) = -1
- 21. Find the Fourier Series of the function f(x) = x, $-\pi < x < \pi$

49

(Pages: 2).

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester B.Sc Degree Examination, March/April 2021

BPH4C04 - Electricity, Magnetism and Nuclear Physics

(2019 Admission onwards)

Time: 2 hours

Max. Marks: 60

The symbols used in this question paper have their usual meanings

Section A – Short Answer type. (Answer all questions in two or three sentences, each correct answer carries a maximum of 2 marks)

- 1. What is electrostatic shielding?
- 2. Distinguish between primary and secondary cosmic rays.
- 3. Define Nuclear Magnetic Resonance.
- 4. Derive the relation between permeability and susceptibility.
- 5. Define temperature coefficient of resistance.
- 6. Electron cannot be accelerated using cyclotron. Why?
- 7. Explain the terms retentivity and coercivity.
- 8. What is Meissener effect?
- 9. What is Higg's Boson?
- 10. Show that the introduction of a dielectric slab into the capacitor can increase the capacitance.
- 11. Define reduction factor of TG.
- 12. What is drift velocity? Write down its expression.

(Ceiling - 20)

Section B – Paragraph / Problem type. (Answer all questions in a paragraph of about half a page to one page, each correct answer carries a maximum of 5 marks)

- 13. The binding energy of $_{12}^{24}$ Mg is 198.25 MeV. Find its atomic mass? (Mass of hydrogen atom = 1.00783u, mass of neutron = 1.0865u)
- 14. The activity of a radioactive sample is decreased to 75% of the initial value after 30 days. Calculate the half life of sample.
- 15. Describe the classification of elementary particle
- 16. With the help of neat diagram explain the working of linear accelerator
- 17. What capacitance is required to store an energy of 100 KWh at a potential difference of 10⁴ V?
- 18. Explain cosmic ray shower
- 19. The force between two electrons when placed in air equal to 0.5 times weight of an electron. Find the distance between two electrons

(Given mass of electron = $9.1 \times 10^{-31} \text{ Kg}$).

(Ceiling - 30)

SECTION C – Essay type (Essays - Answer in about two pages, any one question. Answer carries 10 marks)

- 20. Explain the principle of potentiometer. How can we determine the resistance using potentiometer?
- 21. Explain the theory of vibration magnetometer. With the help of Searle's Vibration magnetometer how can we find the moment of magnet?

 $(1 \times 10 = 10 \text{ marks})$

51

1B4M21555

(Pages: 2)

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester B.Sc Mathematics Degree Examination, March/April 2021

BST4C04 - Statistical Inference and Quality Control

(2019 Admission onwards)

Time: 2 hours

Max. Marks: 60

SECTION-A

Each question carries 2 Marks. Maximum Marks that can be scored in this section is 20.

- 1. Give any three situations in which c- chart can be used.
- 2. What is principle of least squares?
- 3. Write the observational equation in the case of one-way classification
- 4. Distinguish between null and alternative hypothesis
- 5. What is meant by interval estimation?
- 6. How sufficiency is related to conditional distribution?
- 7. Distinguish between defects and defectives
- 8. What is median test?
- 9. Distinguish between assignable causes and chance causes of variation
- 10. Let $X_1, X_2, ..., X_n$ be a random sample from $N(0, \theta^2)$. Give a point estimator of θ^2 .
- 11. State Crammer- Rao inequality
- 12. Give the test statistic for testing the discrepancy between observed frequency and expected frequency.

SECTION-B

Each question carries 5 Marks.

Maximum Marks that can be scored in this section is 30.

- 13. Outline the various steps for ANOVA testing in two way classification
- 14. A random sample of size 25 is taken from a Normal population $N(\mu,9)$. Determine a 95% confidence interval for μ .
- 15. A random sample of 10 boys had the following IQ's: 70, 120, 110, 101, 88, 83, 95, 98, 107, 100. Do the data supports the assumption of a population mean IQ of 100 (use $\alpha = 0.05$)
- 16. Explain the method of moment estimation

17. Test the significance of the difference between the means of the samples from the following data (use $\alpha = 0.01$)

	Size	Mean	SD
Sample A	100	61	4
Sample B	200	63	6 ::

- 18. What is the need for using Non parametric statistics
- 19. Let p be the probability that a coin will fall head in a single toss in order to test

 $H_0: p=1/3$ against $H_1: p=3/4$. The coin is tossed 5 times and H_0 is rejected if more than 2 heads obtained. Find the size and power of the test.

SECTION-C (Answer any one Question and carries 10 marks)

- 20. (a) Explain F- test of equality of variances of two normal populations
 - (b) Following are the set of observations from two normal populations. Test the equality of these population variances at 5% level of significance

From first population	39	41	43	41	45	39	42	44
From second	40	42	40	44	39	38	40	
population	LOT I		STATE			1 2 3	3	the ball

21. Ten samples each of size 5 are drawn at regular intervals from a manufacturing process. The sample means (\bar{X}) and their ranges (R) are given below

Sample No	1	2	3	4	5	6	7	8	9	10
means (\bar{X})	49	45	48	53	39	47	46	39	51	. 45
range (R)	7	5	7	9	5	8	8.	6	7	6

Draw the control chart for means and ranges and comment the result

(for
$$n = 5$$
, $A_2 = 0.577$, $D_4 = 2.115$, $D_3 = 0$)