2M3	N7	121	2
TITLE	114		4

(T)	-
(Pages	2
11 0203	2

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Degree Examination, November 2021 MMT3C11 – Multivariable Calculus & Geometry

(2019 Admission onwards)

Time: 3 hours

Max. Weightage: 30

PART A Answer ALL questions. Each question has Iweightage

- 1. Prove that if A is a one to one linear operator on a finite dimensional vector space X, then range of A is all of X.
- 2. Let $A: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by A(x,y) = (x+y,x-y). Find the derivative of A at any point (x,y) of \mathbb{R}^2 .
- 3. Prove that $\varphi: R \to R$ defined by $\varphi(x) = \frac{1}{2}x + 5$ is a contraction on R.
- 4. Find the cartesian equation of the parametrized curve $\gamma(t) = (\cos^2 t, \sin^2 t)$.
- 5. Find the curvature of the parametrized curve $\gamma(t) = \left(\frac{4}{5}\cos t, 1 \sin t, -\frac{3}{5}\cos t\right)$ at any point $\gamma(t)$.
- 6. Define a surface in R^3 . Give an example.
- 7. Show that first fundamental form for the plane $\sigma(u, v) = a + u\mathbf{p} + v\mathbf{q}$ in R^3 is $du^2 + dv^2$.
- 8. Define the mean curvature H and Gaussian curvature K of a surface at any point p.

 $(8 \times 1 = 8 weightage)$

PART B

Answer any two questions from each unit. Each question carries 2 weightage. Unit I

- 9. Let r be a positive integer. If a vector space X is spanned by a set of r vectors, then prove that dimension of X is less than or equal to r.
- 10. Suppose f maps an open set $E \subset R^n$ into R^m , and f is differentiable at a point $x \in E$. Then prove that the partial derivatives $D_j f_i(x) (1 \le j \le n, 1 \le i \le m)$ exist at all points of E.
- 11. Prove that if X is a complete metric space and if φ is a contraction of X into X, then there exist one and only $x \in X$ such that $\varphi(x) = x$

Unit II

- 12. Calculate the torsion of the circular helix $\gamma(\theta) = (a \cos \theta, a \sin \theta, b\theta) \theta \in R$.
- 13. Prove that any regular plane curve γ whose curvature is a positive constant is part of a circle.
- 14. Let $\sigma: U \to R^3$ be a patch of a surface S containing a point $p \in S$, and let (u, v) be coordinates in U. Prove that the tangent space of S at p is the vector subspace of R^3 spanned by the vectors σ_u and σ_v .

Unit III

- 15. If γ is a unit-speed curve on an oriented surface S, then prove that its normal curvature is $k_n = \langle \langle \dot{\gamma}, \dot{\gamma} \rangle \rangle$.
- 16. Let $\sigma(u,v)$ be a surface patch with first and second fundamental forms $Edu^2 + 2Fdudv + Gdv^2 \text{ and} Ldu^2 + 2Mdudv + Ndv^2 \text{ respectively. Prove that}$ the Gaussian curvature is $\frac{LN-M^2}{EG-F^2}$
- 17. Let *S* be a connected surface of which every point is an umbilic. Prove that *S* is an open subset of a plane or a sphere.

 $(6 \times 2 = 12 weightage)$

PART C Answer any Two questions. Each question has weightage5.

- 18. a)Prove that $L(R^n, R^m)$ is a metric space.
 - b)Let Ω be the set of all invertible linear operators on \mathbb{R}^n , then prove that Ω is an open subset of $L(\mathbb{R}^n)$.
- 19. Suppose f is acontinuously differentiable mapping of an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^n , f'(A) is invertible for some $a \in E$ and b = f(a). Then prove that
 - a) There exist open sets U and V such that $a \in U$, $b \in U$, f is one to one on U and f(U) = V
 - b) If g is the inverse of f defined on V by $g(f(x)) = x (x \in U)$, then g is continuously differentiable on V.
- 20. a) Prove that any reparametrisation of a regular curve is regular.
 - b) Prove that a parametrized curve has a unit speed reparametrization if and only if it regular
- 21. a) Compute the second fundamental form of the surface $\sigma(u, v) = (u, v, u^2 + v^2)$
 - b) Define Weingarten map and hence prove that the Weingarten map is self adjoint.

47	F73	TO	3.	
ZIV	13N	(2)	3	LS

(Pages: 2)

Reg. No:....

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Degree Examination, November 2021

MMT3C12 - Complex Analysis

(2019 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part A Answer all questions Each question carries 1 weightage

- 1. Define radius of convergence R and find R for the series $\sum_{n=0}^{\infty} z^{n!}$.
- 2. Find the point at which the function tan z is not analytic.
- 3. Find the cross ratio of (1,-1,i,-i).
- 4. If z = x + iy, prove that $|e^z| = e^x$.
- 5. When will you say that two curves homotopic to each other.
- 6. Determine the nature of singularity of the function $e^{1/z}$ at z=0. Justify your answer.
- 7. Find the residues of the function $f(z) = \frac{z^2-2}{z(z-2)}$ at z=2 and z=0.
- 8. Define: meromorphic function. Give an example.

 $(8 \times 1 = 8 \text{ Weightage})$

Part B Answer any two questions from each unit Each question carries 2 weightage

UNIT I

- 9. For a given power series $\sum_{n=0}^{\infty} a_n (z-a)^n$ define the number R by $\frac{1}{R} = \limsup |a_n|^{(1/n)}$, then prove that, if |z - a| < R then the series converges absolutely otherwise it diverges
- 10. If G is open and connected and $f: G \to C$ is differentiable with $f'(z) = 0 \ \forall z \in G$, then prove that f is constant
- 11. State and prove symmetric principle with respect to Mobius transformation.

UNIT II

- 12. Show that if $f: C \to C$ is continuous function such, f is analytic on [-1, 1]. Then prove that f is an entire function.
- 13. State and prove open mapping theorem.
- 14. If G is simply connected and $f: G \to C$ is analytic in G then prove that f has a primitive in G.

UNIT III

- 15. If f has an isolated singularity at z = a then prove that the point z = a is a removable singularity iff $\lim_{z \to a} (z a) f(z) = 0$.
- 16. State and prove Argument principal.
- 17. Show that $\int_{-\infty}^{\infty} \frac{x^2}{1+x^4} dx = \frac{\pi}{\sqrt{2}}$

 $(6 \times 2 = 12 \text{ Weightage})$

Part C Answer any two questions Each question carries 5 weightage

- 18. Let $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ have radius or convergence R > 0 then prove that For each $k \ge 1, \sum_{n=k}^{\infty} n(n-1) \dots (n-k+1) a_n (z-a)^{n-k}$ the series has radius of convergence R and f is infinitely differentiable on B(a;R).
- 19. If γ is a closed rectifiable curve in G such that $\gamma \sim 0$, then prove that $n(\gamma, w) = 0 \ \forall \gamma \in C G$ where C is the entire complex plane.
- 20. State and prove Laurent series development of an analytic function
- 21. (a)state and prove Hadamad's three cycle theorem.
 - (b) Show that $\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$

 $(2 \times 5 = 10 \text{ Weightage})$

2M3N21314	(Pages: 3)	Reg. No:
		Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Degree Examination, November 2021 MMT3C13 – Functional Analysis

(2019 Admission onwards)

Time: 3 hours Max. Weightage: 30

PART A Answer all questions. Each question carries a weightage 1.

- 1. Show by an example that the completeness of a metric space may not be shared by an equivalent metric.
- 2. Let $1 \le p < \infty$. Show that the closed unit ball in l^p is not compact.
- 3. Let f be a nonzero linear functional on a normed space X. Prove that if Z(f) is dense in X then f is discontinuous.
- 4. If X and Y are two nonzero normed spaces then prove that BL(X,Y) is nonzero.
- 5. Let X be a normed space over \mathbb{K} and $0 \neq a \in X$. Prove that $||a|| = \{|f(a)|: f \in X', ||f|| \leq 1\}$.
- 6. If *Y* is a proper dense subset of a Banach space *X* then prove that *Y* is not a Banach space in the induced norm.
- 7. Let X be a metric space. If Y and Z are metric spaces, $F: X \to Y$ is continuous and $G: Y \to Z$ is closed then prove that $G \circ F: X \to Z$ is closed.
- 8. Prove that every orthogonal subset of a nonzero elements in an inner product space is linearly independent.

(8×1=8 Weightage)

PART B

Answer any two questions from each unit Each question carries a weightage 2.

UNIT I

- 9. If $X = \mathbb{R}$ and d denotes the usual metric on X then prove that every open subset in X is a disjoint union of a countable number of open intervals in X.
- 10. State and prove Riesz lemma for normed spaces.
- 11. Let X and Y be normed spaces and $F: X \to Y$ be a linear map. Prove that F is continuous if and only if F is bounded on $\overline{U}(0,r)$ for some r > 0.

 $(2\times2 = 4 \text{ Weightage})$

UNIT II

- 12. Let X be a normed space over \mathbb{K} , and f be a nonzero linear functional on X. If E is an open subset of X then prove that f(E) is an open subset of \mathbb{K} .
- 13. If every absolutely summable series is summable in a normed space *X* then prove that *X* is a Banach space.
- 14. Define the canonical embedding of a normed space X into its second dual $X^{''}$ and prove that it is a linear isometry.

 $(2 \times 2 = 4 \text{ Weightage})$

UNIT III

- 15. Let X and Y be normed spaces. If Z is a closed subspace of X then prove that the quotient map $Q: X \to X/Z$ is a continuous open map.
- 16. State and prove the bounded inverse theorem.
- 17. Let H be a H ilbert Space, $\{u_1, u_2, \dots\}$ be a countable orthonormal set in H and k_1, k_2, \dots belong to \mathbb{K} be such that $\sum_n |k_n|^2 < \infty$. Then prove that $\sum_n k_n u_n$ converges in H.

 $(2 \times 2 = 4 \text{ Weightage})$

Part C Answer any two question. Each question carries a weightage 5

- 18. (a)For $1 \le p < \infty$, prove that the metric space l^p is separable.
 - (b) Let X be normed space over \mathbb{K} and E_1 , E_2 be disjoint nonempty convex subsets of X, where E_1 is open in X. Prove that there exists an f in X and $t \in \mathbb{R}$ such that $Ref(x_1) < t \le Ref(x_2)$ for all $x_1 \in E_1$ and for all $x_2 \in E_2$.
- 19. (a) Let X and Y be normed spaces and $F: X \to Y$ be a linear map such that the range R(F) of F is finite dimensional. Prove that F is continuous if and only if the zero space Z(F) of F is closed in X.
 - (b)Let X and Y be a Banach spaces and $F: X \to Y$ be a linear map which is closed and surjective. Prove that F is continuous and open.
- 20. (a) Let X and Y be normed spaces and $X \neq 0$. Prove that BL(X,Y) is a Banach space if and only if Y is a Banach space.
 - (b). State and prove Schwarz inequality for inner product spaces.
- 21. (a) Prove that a Banach space cannot have a denumerable basis.
 - (b) What is meant by a Schauder basis?. Illustrate.
 - (c)Prove that if a normed space has a schauder basis then it is separable.

 $(2 \times 5 = 10 \text{ Weightage})$

27/	21	111	21	=
2M	211	121	21	3

(Pages: 3)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Degree Examination, November 2021

MMT3C14 - PDE & Integral Equations

(2019 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part A Answer all questions. Each question carries 1 weightage

- 1. Solve the equation $xu_x + (x + y)u_y = 1$ with the initial condition u(1, y) = y.
- 2. Find the domains where the following equation is hyperbolic, parabolic and elliptic.

$$u_{xx} + 2u_{xy} + [1 - q(y)]u_{yy} = 0$$
, where $q(y) = \begin{cases} -1; & y < -1 \\ 0; & |y| \le 1 \\ 1; & y > 1 \end{cases}$

3. Evaluate u(1,4), if u(x,t) is the solution of the Cauchy problem

$$u_{tt} - u_{xx} = 0 ; 0 < x < \infty, t > 0,$$

 $u(0,t) = t^2 ; t > 0,$
 $u(x,0) = x^2 ; 0 \le x < \infty,$
 $u_t(x,0) = 6x ; 0 \le x < \infty,$

- 4. Let u(x, y) be a harmonic function in a domain D, show that $u \in C^{\infty}(D)$.
- 5. Describe Separated and Periodic boundary conditions in heat conduction problems.
- 6. Consider the kernel $K(x, \xi) = x + \xi$ in the interval (0, 1). Find the resolvent kernel associated with the kernel in the form of a power series in λ .
- 7. Define separable kernel. Is $e^{x\xi}$ separable? Justify your answer.
- 8. Show that the kernel $K(x, \xi) = \sin x \cdot \cos \xi$ has no characteristic numbers associated with $(0, 2\pi)$.

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer any two questions from each unit. Each question carries 2 weightage

Unit I

- 9. Find a coordinate system that transforms the equation $u_{xx} + 6u_{xy} 16u_{yy} = 0$ into its canonical form. Hence find its general solution.
- 10. Find a compatibility condition for the Cauchy problem

$$u_x^2 + u_y^2 = 1$$
, $u(\cos s, \sin s) = 0$, $0 \le s \le 2\pi$

Also solve the problem.

11. Solve the Cauchy problem

$$u_{tt} - 9u_{xx} = e^x - e^{-x}; -\infty < x < \infty, t > 0$$

$$u(x,0) = x, \ u_t(x,0) = \sin x; -\infty < x < \infty.$$

Unit II

12. Solve the problem

$$u_{tt} - 4u_{xx} = 0; \ 0 < x < 1, t > 0,$$

$$u_{x}(0, t) = u_{x}(1, t) = 0; \ t \ge 0$$

$$u(x, 0) = \cos^{2}\pi x; \ 0 \le x \le 1$$

$$u_{t}(x, 0) = \sin^{2}\pi x \cdot \cos \pi x; \ 0 \le x \le 1$$

- 13. Solve the Laplace equation $\nabla^2 u = 0$ in the square $0 < x, y < \pi$, subject to the boundary condition $u(x,0) = u(x,\pi) = 1$, $u(0,y) = u(\pi,y) = 0$.
- 14. Using the energy method prove uniqueness of the problem

$$u_t - ku_{xx} = F(x,t); \ 0 < x < L, t > 0,$$

 $u(0,t) = a(t), \quad u(L,t) = b(t); \ t \ge 0$
 $u(x,0) = f(x); \ 0 \le x \le L$

Unit III

- 15. For the homogeneous Fredholm integral equation $y(x) = \lambda \int_a^b K(x, \xi) y(\xi) d\xi$, with symmetric kernel $K(x, \xi)$, show that the characteristic functions corresponding to distinct characteristic numbers are orthogonal over (a, b).
- 16. Write a note on Neumann series.
- 17. Derive the formula $\underbrace{\int_a^x \dots \int_a^x}_{n \text{ times}} f(x) dx \dots dx = \frac{1}{(n-1)!} \int_a^x (x-\xi)^{n-1} f(\xi) d\xi$

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any two questions. Each question carries 5 weightage

- 18. (a) Derive d'Alembert's formula for the Cauchy problem for the one-dimensional homogenous wave equation.
 - (b) State and prove the existence and uniqueness theorem for the Cauchy problem of first order Quasilinear equations.
- 19. (a) Solve the Heat equation with homogeneous boundary conditions by method of separation of variables.
 - (b) State and prove The weak maximum principle and The strong maximum principle.
- 20. (a) Using Green's function transform the boundary value problem y'' + xy = 1, y(0) = 0, y(l) = 1to an Integral equation.
 - (b) If y satisfies the Volterra equation $y(x) = \int_0^x \xi(\xi x)y(\xi) d\xi + \frac{1}{2}x^2$, show that y also satisfies an initial value problem. Is the converse is true? Justify your answer.
- 21. (a) Using Lagrange method analyze the problem

$$xuu_x + yuu_y = x^2 + y^2$$
; $x > 0$, $y > 0$, $u(x, x) = \sqrt{2}x$.

Determine whether there exists a unique solution, infinitely many solutions or no solution at all. If there is a unique solution, find it; if there are infinitely many solutions, find at least two of them.

(b) Prove that the equation $y(x) = \frac{1}{\pi} \int_0^{2\pi} \sin(x + \xi) \ y(\xi) \ d\xi + F(x)$ possesses no solution when F(x) = x, but that it possesses infinitely many solutions when F(x) = 1. Determine all such solutions.

 $(2 \times 5 = 10 \text{ weightage})$

2M3N21316	(Pages: 3)	Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE Third Semester M.Sc Degree Examination, November 2021

MMT3E03 - Measure and Integration

(2019 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Section A Answer ALL questions. Each question carries 1 weight.

- 1. Prove or disprove: "the set $\mathfrak M$ of all finite subsets of a countable set X is a σ -algebra.
- 2. Let μ be a positive measure on a σ -algebra \mathfrak{M} and $A_1 \supseteq A_2 \supseteq A_3 \supseteq \cdots$ be sets in \mathfrak{M} . If $A = A_1 \cap A_2 \cap A_3 \cap \cdots$ and if $\mu(A_1) < \infty$, then prove that $\mu(A_n) \longrightarrow \mu(A)$ as $n \longrightarrow \infty$.
- 3. Define Lebesgue integral of a measurable function over a set in a σ -algebra. If $0 \le f \le g$, then prove that $\int_E f \, d\mu \le \int_E g \, d\mu$.
- 4. Suppose $f: X \longrightarrow [0, \infty]$ is measurable, $E \in \mathfrak{M}$ and $\int_E f d\mu = 0$. Then prove that f = 0 a.e. on E.
- 5. Let μ be a complex measure $|\mu|$ its total variation measure. Prove that $\|\mu\| = |\mu|(X)$ defines a norm on the vector space of all complex measures.
- What is meant by mutually singular measures?
 Let λ₁ and λ₂ be measures and μ be a positive measure.
 If λ₁ ⊥ μ and λ₂ ⊥ μ, then prove that (λ₁ + λ₂) ⊥ μ.
- 7. Explain the Hahn Decomposition with all necessary details.
- 8. State Fubini's theorem and explain all the terms involved.

 $8 \times 1 = 8$ Weights.

Section B

Answer any TWO questions from each unit. Each question carries 2 weights.

UNIT I

9. Define Borel sets, F- σ sets and G- δ sets. Give example of an F- σ set that is not closed. Also give example of a G- δ set that is not open.

- 10. State and prove Fatou's Lemma.
- 11. Explain the concept of "a property almost everywhere" with respect to a measure. In the collection of measurable functions, prove that, equality almost everywhere is an equivalence relation.

UNIT II

- 12. Let X be a locally compact, σ -compact Hausdorff space. Let $\mathfrak M$ be a σ -algebra containing all Borel subsets of X. Let μ be a regular Borel measure on $\mathfrak M$. If $E \in \mathfrak M$ and $\varepsilon > 0$, prove that there is a closed set F and an open set V such that $F \subset E \subset V$ and $\mu(V F) < \varepsilon$.
- 13. Prove that every set of positive measure has non-measurable subsets.
- 14. Suppose μ and λ are measures on a σ -algebra \mathfrak{M} , μ is positive and λ is complex. Prove that the following two statements are equivalent.
 - a) λ ≪ μ
 - b) To every $\varepsilon > 0$ corresponds a $\delta > 0$ such that $|\lambda(E)| < \varepsilon$ for all $E \in \mathfrak{M}$ with $\mu(E) < \delta$.

UNIT III

- 15. Let (X, \mathcal{S}) and (Y, \mathcal{T}) be measurable spaces. Prove that $\mathcal{S} \times \mathcal{T}$ is the smallest monotone class that contains all elementary sets.
- 16. Let (X, \mathcal{S}) and (Y, \mathcal{T}) be measurable spaces. If $E \in \mathcal{S} \times \mathcal{T}$, then prove that $E_x \in \mathcal{T}$ and $E^y \in \mathcal{S}$.
- 17. Define Lebesgue Point of an $f \in L^1(\mathbb{R}^k)$. Prove that for an $f \in L^1(\mathbb{R}^k)$, almost every $\overline{x} \in \mathbb{R}^k$ is a Lebesgue Point of the f.

 6×2 = 12 Weights.

Section C

Answer any TWO questions. Each question carries 5 weights.

- 18. a) Define a measurable function.
 - b) Prove that every measurable non-negative extended real valued function is the limit of an increasing sequence of simple measurable functions.

- 19. State and prove Lusin's theorem.
- 20. a) Prove that the total variation measure of a complex measure is a positive measure.
 - b) If μ is a complex measure on a non-empty set X, prove that $|\mu|(X) < \infty$.
- 21. Let (X, \mathcal{S}, μ) and $(Y, \mathcal{T}, \lambda)$ be σ -finite measure spaces, f an $\mathcal{S} \times \mathcal{T}$ -measurable function on $X \times Y$.
 - a) Prove that for each $x \in X$ the function f_x defined as $f_x(y) = f(x,y)$ is a \mathcal{T} -measurable on Y.
 - b) Let $Q \in \mathscr{S} \times \mathscr{T}$. If $\phi(x) = \lambda(Q_x)$ and $\psi(y) = \mu(Q^y)$ for every $x \in X$ and $y \in Y$ then prove that ϕ is \mathscr{S} -measurable and ψ is \mathscr{T} -measurable. Also prove that

$$\int_X \phi \, d\mu = \int_Y \psi \, d\lambda.$$

 $2 \times 5 = 10$ Weights.