	11	91.4	24
2 B	2MC	114	44

(Pages : 2) Reg. No:.....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester Integrated M.Sc Geology Degree Examination, March/April 2021 BPH2C02 - Optics, Laser, Electronics & Communication

(2020 Admission onwards)

Time: 2 hours

Max. Marks: 60

Section A

Answer all questions. Answer in two or three sentences. Each correct answer carries a maximum of two marks.

- What are coherent sources? Give an example. 1.
- What are Newton's rings? Give two of its uses. 2.
- State and explain grating law. 3
- Distinguish between Fraunhofer and Fresnel's diffraction. 4.
- What is a half wave plate? What is its use? 5.
- Draw the intensity distribution curve of the single slit diffraction pattern 6.
- Obtain the relation between current amplification factors a and b 7.
- Draw the diagram of exclusive OR gate. Also draw its truth table. 8.
- What is negative feedback? What is its need? 9.
- What is stimulated emission? 10.
- Distinguish between e rays and o rays. 11.
- What is specific rotation? 12.

(Ceiling: 20 Marks)

Section B (Paragraph/Problem) (Answer all questions in a paragraph of about half a page to one page. Each correct carries a maximum five marks)

- 13. What are constructive and destructive interferences? Give the conditions.
- In Newton's Ring experiment the radius of curvature of the curved side of a plano lens is 100cm. Wavelength of light used is 6x10⁻⁵ cm. What will be the radius of 9th bright rings?
- 15. If the critical angle of glass air boundary is 42°, calculate the polarising angle for g
- 16. What are the conditions for brightness and darkness of normal incidence of light or plane film producing interference?
- 17. Write a short note on Ruby laser.
- 18. How will you distinguish between planes, elliptically and circularly polarised light'
- 19. Explain the working of a transistor oscillator.

(Ceiling:30N

Section C (Essay) Answer anyone in about two pages .Each question carries ten marks)

- Give the theory of plane diffraction grating and explain how it is used to measure th wavelength of light.
- Describe the principle and working of a full wave rectifier. Obtain the expressions for efficiency and ripple factor.

(1x10=10 M)

2M2M21426

(Pages: 2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester M.Sc Degree Examination, March/April 2021

MPH2C05 - Quantum Mechanics - I

(2020 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Section A

Answer all questions, each carry weightage 1

- 1. Discuss the consequences of sequential Stern-Gerlach experiments.
- 2. Show that the incompatible observables do not have a complete set of simultaneous eigenkets.
- 3. Compare between Classical and Quantum Mechanical equation of motions.
- 4. Establish the commutation relations between angular momentum components and also with square of angular momentum.
- 5. Give the Schrodinger equation for four different potentials.
- 6. Give the algebra obeyed by Pauli spin matrices.
- 7. Show that the wavefunction of a system of identical particles is either totally symmetric or totally antisymmetric.
- 8. Distinguish between BE statistics and FD statistics.

(Total weightage $8 \times 1 = 8$)

Section B

Answer any two questions, each carry weightage 5

- 9. Describe kets, bras, inner products and operators. Also discuss their algebra.
- 10. Solve the simple harmonic oscillator problem using the concepts of generating functions.
- 11. Discuss the orbital angular momentum as rotation generator. Obtain spherical harmonics as rotation matrices.

12. Solve the Schrodinger equation for central potentials and find the energy eigen values of 3-D isotropic harmonic oscillator.

(Total weightage $2 \times 5 = 10$)

Section C

Answer any four questions, each carry weightage 3

- 13. Show that the expectation value of an anti-Hermitian operator is imaginary.
- 14. Show that the change of basis can be performed by unitary transformation.
- 15. The Hamiltonian for a 3-D particle is given by $H = \frac{p^2}{2m} + V(\mathbf{x})$. Show that $[\mathbf{x} \cdot \mathbf{p}, H] = i\hbar \left(\frac{\mathbf{p}^2}{m} \mathbf{x} \cdot \nabla \mathbf{V}(\mathbf{x})\right)$.
- 16. For a 1-D simple harmonic oscillator, using the definitions of Dirac's abstract operators, evaluate $\langle m|x|n\rangle$, $\langle m|p|n\rangle$, $\langle m|x^2|n\rangle$ and $\langle m|p^2|n\rangle$
- 17. Find the eigenvalues and eigenvectors of $\sigma_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ for an electron in the spin state $\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$.
- 18. For a spin 1 particle, find the spin matrices S_x , S_y , and S_z with order 3×3 .
- 19. Evaluate the clebsch-gordon coefficients for 2 spin half particles.

(Total weightage $4 \times 3 = 12$)

2M2	M	[21	42	7
AR 2.				

(Pages: 2)

Reg. No:....

Name: .

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester M.Sc Degree Examination, March/April 2021

MPH2C06 - Mathematical Physics - II

(2020 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Section A (Answer all questions, each carry weightage 1)

- 1. Define analytic function. Check whether or not the function z* is analytic.
- 2. Find the analytic function if the imaginery part is $e^{-y}\sin x$.
- 3. Show that a group of order three is always cyclic.
- 4. Show that the inverse of an element in a group is unique.
- 5. Apply Euler's equation to find the shortest distance between two points in the Euclidian xy plane.
- 6. Using the method of variation find the ratio of radius to height of a right-circular cylinder that will minimize its total surface area for a fixed volume.
- 7. Show that $u(x) = \int G(x,y)f(y)dy$ is a solution to Lu(x) = f(x), where L is a linear operator and G(x,y) is the associated Green's function.
- 8. Write down the characteristics of the Green's function.

 $(8 \times 1 = 8 \text{ weightage})$

Section B Answer ANY TWO questions, each carry weightage 5)

- 9. Obtain an expression for the derivative of a function f(z) of complex variable z and hence show that if f(z) is analytic, so is its derivatives.
- 10. What is homomorphism? Show that the group SU(2) is homomorphic to SO(3) group.
- 11. Find the approximate solution y(x) which satisfies the differential equation with $y'' + (\frac{\pi}{2})^2 = 0$ the boundary conditions y(0) = 1, y(1) = 0.
- 12. Construct the Green's function for the boundary value problem problem

$$\frac{d^2y}{dx^2} - k^2y = 0, y(\pm \infty) = 0.$$

 $(2 \times 5 = 10 \text{ weightage})$

Section C Answer ANY FOUR questions, each carry weightage 3)

- 13. Show that if function of a complex variable f(z) is analytic so is $f^*(z^*)$.
- 14. Show that $\int_0^{\pi} \frac{d\theta}{(a + \cos \theta)^2} = \frac{\pi a}{(a^2 1)^{3/2}}$, where a > 1.
- 15. If every element in a group is its inverse, show that the group is abelian.
- 16. Apply Euler's equation to find the shape of the soap film formed between two coaxial rings of different size.
- 17. Find the integral equation corresponding to the boundary value problem $y''(x) + \lambda y(x) = 0, y(0) = y(1) = 0.$
- 18. Use Newman series to solve $\phi(x) = 1 2 \int_0^x t \phi(t)$.
- 19. Show that the Green function is symmetric about its variables.

 $(4 \times 3 = 12 \text{ weightage})$

2M21	V121	428
------	------	-----

(Pages: 2)	(P	a	g	e	S		2)
------------	---	---	---	---	---	---	--	----

Reg.	No:.	 	 	 	
_					

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester M.Sc Degree Examination, March/April 2021 MPH2C07 – Statistical Mechanics

(2020 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Section A (Answer all questions, each carries weightage 1)

- 1. Distinguish between canonical, microcanonical and grand canonical ensembles.
- 2. Define chemical potential.
- 3. What is partition function?
- A. Bring out the statistical origin of Third law of thermodynamics.
- 5. State Virial theorem.
- 6. What is meant by Fermi energy?
- 7. How is fugacity of a system related to q potential?
- 8. Why the electrons in a metal do not contribute to its specific heat at room temperature.

(8x1=8weightage)

Section B (Answer ANY TWO questions, each carries weightage 5)

- 9. Derive Liouville's theorem and explain its consequences.
- 10. Using grand partition function derive the general form of 'q' potential for M.B, B.E and F.D statistics.
- 11. Obtain the equation of state of an ideal Fermi gas at 1) High temperature and low density 2)Low temperature and high density.
- 12. Derive Bose-Einstein distribution law. How would it be used to obtain Plack's formula for black body radiation?

(2x5=10 weightage)

Section C (Answer ANY FOUR questions, each carries weightage 3)

- 13. Show that the pressure of a non-relativistic gas is $^2/_3$ of its energy density.
- 14. Explain Gibb's paradox. How it is resolved?
- 15. Show that a system of phonons obeys T³ law at low temperature.
- 16. Using density matrix in canonical ensemble find the expression for $< \sigma_z >$ for an electron in a magnetic field.
- 17. Obtain the relation $\langle H \geq \frac{1}{2} fkT \rangle$ and explain its physical significance.
- 18. Express the average energy of a quantum harmonic oscillator as a hyperbolic function.
- 19. Obtain an expression for Chemical potential of a Bose gas at very low temperature

(4x3=12 weightage)

2M2	3	17	14	79
ZIVIL	TA	1.00	7.7	m /

(Pages: 2)	Reg. No:
	Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester M.Sc Degree Examination, March/April 2021

MPH2C08 - Computational Physics

(2020 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Section A (Answer all questions. Each carries one weightage)

- 1. Give a single statement in Python for the following operations.
 - a) finding average of ten integers stored in a list 'l'.
 - b) to reverse a string stored in object 's'.
 - c) to print the contents of two float objects 'x' and 'y' correct to three decimal places and their product correct to two decimal places.
 - d) to return 'x' in degrees given the value of sin(x).
- 2. Explain how an array object is created, saved and restored.
- 3. Explain with suitable examples how polar plots and pie charts are created.
- 4. Discuss the technique of linear spline interpolation.
- 5. Write short note on any one numerical technique used for solving differential equations stated as a boundary value problem.
- 6. Discuss the factors which determines the accuracy and stability of results obtained by implementing numerical techniques using computers.
- 7. Sketch the following plots describing the motion of ideal and damped simple harmonic oscillator. a) velocity vs time; b) velocity vs displacement.
- 8. According to logistic map function representing population growth, what happens when control parameter value is between a) 0 and 1; b) 1 and 2; c) 2 and 3.

 $(8 \times 1 = 8 \text{ weightage})$

Section B (Answer any two questions. Each carries five weightage)

- Define gamma function. State the recursive property and Euler's reflection formula.
 Explain a method for evaluating the function numerically.
- 10. What is meant by interpolation? Derive Newton's forward difference interpolation formula.
- 11. Explain with necessary details fourth order Runge-Kutta method.
- 12. Discuss the numerical solution of a body falling in a viscous medium. Write a Python program to plot the velocity-time graph of the body.

 $(2 \times 5 = 10 \text{ weightage})$

Section C (Answer any four questions. Each carries three weightage)

- 13. Write a Python program to sort 'n' numbers in descending order.
- 14. Find the Fourier series of the function defined by; $f(t) = -1 \text{ when } -\pi < t < 0; \ f(t) = 0 \text{ when } t = 0 \text{ and } f(t) = 1 \text{ when } 0 < t < \pi.$
- 15. Evaluate $\int_{1}^{2} \frac{1}{x^{2}} dx$ using Trapezoidal rule.
- 16. Calculate the cube root of 30 correct to three decimal places using regula-falsi method.
- 17. Using Euler's method, find y(0.5), given that dy/dx = x + y and y(0) = 1.
- 18. Derive the Numerov algorithm for the differential equation of the form $d^2y/dx^2 + k^2(x).y(x) = 0.$
- 19. Explain Monte-Carlo algorithm for finding the value of π . Write a Python program to simulate the logic.

 $(4 \times 3 = 12 \text{ weightage})$