22

1M4M19198

(Pages: 2)

Reg. No:.....

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester M.Sc Degree Examination, March /April 2019 MT4E02 – Algebraic Number Theory

(2017 Admission onwards)

Time: 3 hours

Max. weightage: 36

PART A Answer all questions. Each questions has one weightage 1

- 1. Show that the coefficients of the field polynomial are rational numbers.
- 2. Find the minimal polynomial of $i + \sqrt{2}$ over Q, the field of rational.
- 3. What are the units in $\mathbb{Q}(\sqrt{-1})$?
- 4. Find an integral basis for $Q(\sqrt{5})$.
- 5. If $\{a_1, a_2, a_3, ..., a_n\}$ is a basis of K consisting of integers, then show that $\Delta[a_1, a_2, a_3, ..., a_n]$ is a rational integer, not equal to zero.
- 6. If $K = Q(\xi)$ where $\xi = e^{\frac{2\pi i}{5}}$ find $N_K(\xi^2)$.
- 7. Define norm and trace of an element a of the number field.
- 8. Prove that an associate of an irreducible is irreducible.
- 9. Let R be a ring and a an ideal of R. Then show that a is maximal if R/a is a field.
- 10. If x and y are associates, prove that $N(x) = \pm N(y)$.
- 11. Let K be a number field of class number h, and a an ideal of the ring of integers, then show that a^h is principal.
- 12. Sketch the lattice in R^2 generated by (0,1) and (1,0).
- 13. Define the volume v(X) where $X \subset \mathbb{R}^n$.
- 14. Define class group.

(14x1 = 14 weightage)

PART B

Answer any seven from the following ten questions. Each questions has weightage of 2

- 15. Show that an algebraic number a is an algebraic integer if and only if its minimum polynomial over \mathbb{Q} has coefficient in \mathbb{Z} .
- 16. Express the polynomials $t_1^2 + t_2^2 + t_3^2$ and $t_1^3 + t_2^3$ in terms of elementary symmetric polynomials.
- 17. Prove that the set A of algebraic numbers is a subfield of the complex field C.
- 18. If $\{a_1, a_2, a_3, ..., a_n\}$ is any Q basis for K, then $\Delta[a_1, a_2, a_3, ..., a_n] = \det(T(a_i a_j))$
- 19. Find the minimal polynomial of $\xi = e^{\frac{2\pi i}{p}}$, p is an odd prime, over Q and find its degree
- 20. Prove that factorization into irreducibles is not unique in $Q(\sqrt{-26})$.
- 21. Evaluate | $\mathbb{Z}[\sqrt{-17}/< 18 > |$.
- 22. If **D** is the ring of integers of a number field **K**, and if **a** and **b** are non-zero ideals of **D**, then show that N(ab)=N(a) N(b).
- 23. Show $x^4 + y^4 = z^2$ has no integer solutions with $x, y, z \neq 0$.
- 24. Define a circle group. Show that $\mathbb{R}/\mathbb{Z} \cong S$.

(7x 2 = 14 weightag)

PART C Answer any two from the following questions. Each questions has weightage of 4

- 25. a) If K is a number field, Then prove that $K = Q(\theta)$ for some algebraic number θ . b) Express $Q(\sqrt{2}, \sqrt{3})$ in the form of $Q(\theta)$.
- 26. Prove that every subgroup H of a free Abelian group G of rank n is a free of rank $\leq n$. Also prove that there exists a basis $u_1, u_2, \dots u_s$ for G and positive integers $\alpha_1, \alpha_2, \dots \alpha_n$ such that $\alpha_1 u_1, \alpha_2 u_2, \dots \alpha_s u_s$ is a basis for H.
- 27. a) Define an integral basis. Show that every number field possess an integral basis. b)Let $K = \mathbb{Q}(\theta)$ be a number field, where θ has minimum polynomial p of degree n. Show that the $\mathbb{Q} basis \{1, \theta, \theta^2, \dots, \theta^{n-1}\}$ has discriminant.
 - $\Delta[1, \theta, \theta^2, ..., \theta^{n-1}] = (-1)^{\frac{n(n-1)}{2}} N(D_p(\theta))$ where D_p is the formal derivative of p.
- 28. a) Show that an additive subgroup of \mathbb{R}^n is a lattice if and only if it is discrete.
 - b)Define a fundamental domain. Sketch fundamental domain of the lattice generated by $\{(1,0),(0,1)\}$ in \mathbb{R}^2 .

 $(2 \times 4 = 8 \text{ weight})$

me:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester M.Sc Degree Examination, March /April 2019 MT4E14 - Differential Geometry

(2017 Admission onwards)

Time: 3 hours

Max. weightage: 36

Part A Answer All questions. Each question carries 1 weightage

- 1. Sketch the vector field on R²: Where $X(x_1, x_2) = (x_2, x_1)$.
- 2. Show that the gradiant of f at $p \in f^{-1}(c)$ is orthogonal to all vectors tangent to $f^{-1}(c)$ at p.
- 3. Show that the graph of a smooth function $f: U \subset \mathbb{R}^n \to \mathbb{R}$ is an $n \text{surface in } \mathbb{R}^{n+1}$.
- 4. Find and sketch the gradiant field of the function $f(x_1, x_2) = x_1 x_2^2$.
- 5. Show that if $\alpha: I \to R^{n+1}$ is a parametrized curve with constant speed then $\ddot{\alpha}(t) \perp \dot{\alpha}(t)$ for all $t \in I$.
- 6. Let $f: U \to R$ be a smooth function and $\alpha: I \to U$ be an integral curve of ∇f . Show that $\frac{d}{dt}(f \circ \alpha)(t) = ||\nabla f(\alpha(t))||^2$ for all $t \in I$.
- 7. Find the velocity, the acceleration and the speed of the curve $\alpha(t) = (t, t^2)$.
- 8. Let S be an n-surface in \mathbb{R}^{n+1} , let $\alpha: I \to S$ be a parametrized curve and let X and Y are vector fields tangent to S along α . Verify that (fX)' = f'X + fX'.
- 9. Let X and Y be smooth vector fields along parametrized curve $\alpha: I \to \mathbb{R}^{n+1}$ and let $f: I \to \mathbb{R}$ be smooth function along α . Verify that $(X \cdot Y)' = \dot{X} \cdot Y + X \cdot \dot{Y}$.
- 10. Prove that the geodesic have constant speed.
- 11. Compute $\nabla_v f$ where $f: \mathbb{R}^{n+1} \to \mathbb{R}$ and $v \in \mathbb{R}^{n+1}_p$, $p \in \mathbb{R}^{n+1}$ are given by

$$f(x_1, x_2, x_3) = x_1 x_2 x_3^2, v = (1, 1, 1, a, b, c).$$

- 12. Find the length of the parametrized curve $\alpha: I \to \mathbb{R}^{n+1}$ given by $\alpha(t) = (t^2, t^3), I = [0,2], n = 1.$
- 13. Find the Gaussian curvature $K: S \to R$ where S is given by $x_1^2 + x_2^2 x_3^2 = 0, x_3 > 0$.
- 14. Define Geodesic in an n-surface.

 $(14 \times 1 = 14 \text{ weightage})$

Answer any seven questions. Each question carries 2 weightage.

- 15. Find the integral curve through p=(1,1) of the vector field X(p) = p.
- 16. Let S be an n- surface in R^{n+1} , $S=f^{-1}(c)$ where $f:U\to R$ is such that $\nabla f(q)\neq 0$ for all $q\in S$. Suppose $g:U\to R$ is a smooth function and $p\in S$ is an extreme point of g on S, Then Show that there exist a real number λ such that $\nabla g(p)=\lambda \nabla f(p)$.
- 17. Show that the unit n- sphere $x_1^2 + x_2^2 + \dots + x_{n+1}^2 = 1$ is connected if n > 1.
- 18. Let $S \subset R^{n+1}$ be a connected n-surface in R^{n+1} . Then show that there exist on S exactly two smooth unit normal vector fields N_1 and N_2 and $N_2(p) = -N_1(p)$ for all $p \in S$.
- 19. Let S be an n-surface in \mathbb{R}^{n+1} , let $p, q \in S$, and let α be a piecewise smooth parametrized curve from p to q. Then show that parallel transport $P_{\alpha}: S_p \to S_q$ along α is a vector space isomorphism which preserves dot product.
- 20. Let S denote the cylinder $x_1^2 + x_2^2 = r^2$ of radius r > 0 in R^3 . Show that α is a geodesic of S if and only if α is of the form $\alpha(t) = (r\cos(at+b), r\sin(at+b), ct+d)$ for some $a, b, c, d \in R$.
- 21. Show that the Weingarten map at each point of a parameterized n-surface is self adjoint.
- 22. Show that on each compact oriented n-surface S in R^{n+1} , there exist a point p such that the second fundamental form at p is definite.
- 23. Prove that, in an n-phase, parallel transport is path independent.
- 24. Show that the spherical image of an n-surface with orientation N is the reflection through the origin of the spherical image of the same n-surface with orientation –N.

 $(7 \times 2 = 14 \text{ weightag})$

Part C

Answer any two questions. Each question carries 4 weightage

- 25. Let S be an n-surface in R^{n+1} , let $p \in S$ and $v \in Sp$. Then show that there exist an open interval containing 0 and a geodesic $\alpha: I \to S$ such that
 - (i) $\alpha(0) = p$ and $\dot{\alpha}(0) = v$
 - (ii) If $\beta: \tilde{I} \to S$ is any other geodesic in S with $\beta(0) = p$ and $\dot{\beta}(0) = v$, then $\tilde{I} \subset I$ and $\beta(t) = \alpha(t)$ or all $t \in \tilde{I}$.
- 26. Let $\varphi: U \to R^{n+1}$ be a parametrized n-surface in \mathbb{R}^{n+1} and let $p \in U$. Then show that there exist an open set $U_1 \subset U$ about p such that $\varphi(U_1)$ is an n-surface in \mathbb{R}^{n+1} .
- 27. Let S be a compact connected oriented n-surface in Rⁿ⁺¹ whose Gauss- Kronecker curvature is nowhere zero. Then show that
 - (i) The Gauss map $N: S \to S^n$ is one to one and onto. (ii) S is strictly convex.
- 28. Let C be an oriented plane curve. Then show that there exists a global parametrization of C if and only if C is connected. (2 x 4 = 8 weightage

(Pages: 2) 29 Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester M.Sc Degree Examination, March /April 2019 MT4E08 - Probability Theory

(2017 Admission onwards)

Time: 3 hours

Max. weightage: 36

Part A

Answer All questions

Each question has weightage 1.

- Find the probability of getting 1 head and 3 tails when a fair coin is tossed 4 times.
- Find the distribution function of the random variable X with pmf

$$f(x) = \begin{cases} \frac{x^2}{30}, & x = 1, 2, 3, 4 \\ 0, & otherwise \end{cases}$$

- 3. Can $f(x) = \begin{cases} \sin x, & 0 < x < \frac{\pi}{2} \\ 0, & otherwise \end{cases}$ be the density function of a random variable?
- 4. Let X be a random variable with distribution function

$$F(x) = \begin{cases} k(1 - e^{-x})^2, & x > 0 \\ 0, & otherwise \end{cases}$$
 Find k.

- 5. Let X be a random variable. Prove that |X| is also a random variable.
- 6. What is the significance of second central moment of a random variable?
- 7. State Lyapunov Inequality?
- 8. Show that V(X) = 0 only if X is degenerate.
- 9. A fair coin is tossed three times. Let X denote the number of heads and Y denote the number of tails obtained. Give the joint pmf of X and Y.
- 10. State Cauchy Schwarz Inequality.

11. If
$$f(x,y) = \begin{cases} 2, & 0 \le y \le x \le 1 \\ 0, & otherwise \end{cases}$$
 Find E(XY).

- 12. If Cov(X,Y)=0, are the random variables X and Y independent? Justify.
- 13. Does convergence in distribution imply convergence in moments? Justify.
- 14. Can you find the mgf for a Cauchy pdf?

 $(14 \times 1 = 14 \text{ weightage})$

PART-B

Answer any seven from the following ten questions. Each questions has weightage of 2

15. Let
$$f(x, y) = \begin{cases} kxy, & 0 < x < y < 1 \\ 0, & otherwise \end{cases}$$

Find k and E(Y|X=x).

- 16. Let X and Y be two identically distributed random variables. Prove or disprove $P\{X = Y\} = 1$.
- 17. Let X, Y be independent and identically distributed random variables with comm

$$pdf f(x) = \begin{cases} e^{-x}, & x > 0 \\ 0, & otherwise \end{cases}$$

Show that X + Y and $\frac{X}{X + Y}$ are independent.

- 18. Let X be distributed with pdf $f(x) = \begin{cases} 1, & 0 < x < 1 \\ 0, & otherwise \end{cases}$ Find the upper bound for $P\left\{\left|X \frac{1}{2}\right| \ge k / \sqrt{12}\right\}$.
- 19. Prove that the set of discontinuity points of a distribution function is atmost cou
- 20. Let $X_1, X_2, ..., X_n$ denote a random sample from a population with pdf

$$f(x) = \begin{cases} e^{-x}, & x > 0\\ 0, & otherwise \end{cases}$$

Find the distribution of $min(X_1, X_2, ..., X_n)$.

21. X and Y are jointly distributed discrete random variables with probability function

$$f(x,y) \begin{cases} \frac{1}{4}, & at(x,y) = (-3,-5), (-1,-1), (1,1)(3,5) \\ 0, & otherwise \end{cases}$$

Compute E(X), E(Y), E(XY). Are X and Y independent?

- 22. Prove that X and Y are independent random variables if and only if $M(t_1, t_2) = M(t_1, 0) M(t_2, 0)$, for all $t_1, t_2 \in R$.
- 23. Let X_n be distributed as χ^2 (n), $n = 1, 2, \dots$ Find the limiting distribution of X_n
- 24. If $X_n \xrightarrow{a.s.} X$ then prove that $X_n \xrightarrow{P} X$ (7 x 2 = 14 weight

PART- C

Answer any two from the following questions. Each questions has weightage of 4

- 25. A fair coin is tossed 4 times. Let X denote the number of times a head is followe immediately by a tail. Find the probability distribution, mean and variance of X. find the probability distribution if the coin is biased with probability of head 'p'=
- 26. Let (X_1, X_2) have uniform distribution on the triangle $0 \le x_1 \le x_2 \le 1$. Find the defunction of $Y = X_1 + X_2$.
- 27. State and prove Lindberg-Levy Central Limit Theorem.
- 28. Let $\{X_n\}$ be a sequence of iid Random variables with a common finite mean μ .

prove that
$$\frac{S_n}{n} \xrightarrow{p} \mu$$
 as $n \longrightarrow \infty$ where $S_n = \sum_{k=1}^n X_k$. (2 x 4 = 8 weight

(Pages: 1)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester M.Sc Degree Examination, March /April 2019 MT4E12 - Computer Oriented Numerical Analysis

(2017 Admission onwards)

Time: 1.5 hours

Max. weightage: 18

Part A (Short Answer Questions) (Answer all questions. Each question has weightage 1)

- 1. Write the output of 5/3 and 8%3.
- 2. Explain break statement with examples.
- 3. Write an algorithm to find the GCD of two numbers.
- 4. Write a python program that uses while loop.
- 5. Write a python program to display the first n terms of Fibonacci sequence.
- 6. Write an algorithm to find the biggest from among n numbers.

 $(6 \times 1=6 \text{ weightage})$

Part B

(Answer any four from the following six questions. Each question has weightage 2)

- 7. Write a python program that uses functions.
- 8. Write an algorithm to find the $\int_{a}^{b} f(x)dx$ using trapezoidal rule.
- 9. Explain Lagrange's interpolation algorithm.
- 10. Write an algorithm to solve the initial value problem by using Runge Kutta method of order 4.
- 11. Write a short note on the data structures List and Tuple.
- 12. Write an algorithm to find the derivative of continuous function.

(4x2=8 weightage)

Part C

Answer any one from the following two questions. Each question has weightage 4

- 13. Write an algorithm and python programme to find the root of the given continuous function f(x) on [a,b] by using bisection method.
- 14. Write an algorithm and python programme to find the integral using tabulated values by the method of Simpson rule.

(1x4=4 weightage)