| | | | | | | - | |---|------|---|-----|----|-------------|----| | 1 | A/I | 1 | M | 15 | 11 | 98 | | | 10.5 | - | LYL | | 7 J. | 10 | 27 (Pages: 2) | Reg. | No: |
 | | | | | | | | | | | | | | |------|-----|------|--|--|--|--|--|--|--|--|--|--|--|--|--| | Nam | ۵. | | | | | | | | | | | | | | | ## FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE ## Fourth Semester M.Sc Degree Examination, March 2018 MT4C15 – Functional Analysis II (2016 Admission onwards) Max. Time: 3 hours Max. weightage: 36 # PART A Answer all questions Each question carries 1 weightage - 1. State open mapping theorem. - 2. Let X be a normed space over K and $A \in BL(X)$, then prove that $\sigma(A^{-1}) = \{k^{-1} : k \in \sigma(A)\}$. - 3. Let X and Y be normed spaces and $F \in BL(X,Y)$. Define transpose of F. - 4. Show that every reflexive normed space is a Banach space. - If X is a finite dimensional strictly convex normed space. Prove that X is uniformly convex. - Let $\{u_1, u_2,\}$ be an orthonormal set in an inner product space X and $f \in X'$. Prove that $\sum_{n} |f(u_n)|^2 \le ||f||^2$. - 7 Let H be a Hilbert space. $A \in BL(H)$ be irrivertible, prove that $(A^*)^{-1} = (A^{-1})^*$. - Let H be a Hilbert space and $A, B \in BL(H)$ be self-adjoint prove that AB is self-adjoint if and only if A and B commute. - Let H be a Hilbert space and $A \in BL(H)$, then prove that $k \in \sigma(A)$ if and only if $\overline{k} \in \sigma(A^*)$ - 10. Let $A \in BL(H)$ be normal. Prove that eigen vectors corresponding to distinct eigen values are orthogonal. - 11. Prove that numerical range and $A \in BL(H)$ need not be closed. - Let $H = K^2$ and the operator A on H defined by the matrix $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. Find $\sigma(A)$. - 13. Let $A \in BL(CH)$ be a Hilbert-Schmidt operator, then prove that A^* is a Hilbert-Schmidt operator. - 14 Define a compact linear map on a normed space $(14 \times 1 = 14 \text{ weightage})$ #### PART B ### Answer any seven questions Each question carries 2 weightage - 15. Let X and Y be normed spaces and $F: x \to y$ be linear. Prove that F is an open mather exists some t > 0 such that for every $y \in y$, there is some $x \in x$ with F(x) = y and $||x|| \le r ||y||$. - 16 State and prove Bounded Inverse theorem. - 17 Let X be a Banach space. Prove that the set of all invertible operators is open in BL - Let X and Y be normed spaces and $F \in BL(X,Y)$. Prove that $F''J_x = J_yF$, where and J_y are the canonical embedding of X and Y into X'' and Y'' respectively. - 19 For $1 , prove that <math>l^p$ is reflexive. - 20. Let H be a Hilbert space and $f \in H'$. Prove that there is a unique $y \in H$ such that $f(x) = \langle x, y \rangle, x \in H$ - 21. Let H be a Hilbert space and $A \in BL(H)$. Find a relation connecting adjoint A^* an transpose A' of A. - 22 If $A \in BL(H)$ and A^* is bounded below, prove that R(A)=H. - 23 IF $A \in BL(H)$ be normal, prove that $||A^2|| = ||A^*A|| ||A||^2$ - 24. Let $H \neq \{0\}$ and $A \in BL(H)$ be compact and self- adjoint, prove that ||A|| OR -||A|| eigen value of A. $(7 \times 2 = 14 \text{ weig})$ #### PART C ## Answer any two questions Each question carries 4 weightage - 25 State and prove closed Graph theorem. - Let X be a normed space and $A \in BL(X)$ be of finite rank. Prove that $\sigma_e(A) = \sigma_a(A) = \sigma_a(A)$ - 27. Let $A \in BL(H)$ be self- adjoint. Prove that A or -A is a positive operator if and or $|\langle Ax, y \rangle|^2 \le \langle Ax, x \rangle < Ay, y \rangle$ for all $x, y \in H$. - State and prove finite dimensional spectral theorem for self adjoint or normal oper $(2 \times 4 = 8)$ weight Reg. No:.... Name: ## FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE ## Fourth Semester M.Sc Degree Examination, March 2018 MT4C16 - Differential Geometry (2016 Admission onwards) Max. Time: 3 hours Max. Weightage: 36 #### Part A Answer All questions. Each question carries 1 weightage - 1. Sketch the vector field on R^2 : Where X(p) = -p - 2. Show that the graph of any function $f: \mathbb{R}^n \to \mathbb{R}$ is a level set for some function $F: \mathbb{R}^{n+1} \to \mathbb{R}$. - 3. Sketch the cylinder $f^{-1}(0)$ where $f(x_1, x_2) = x_1$. - 4. Find and sketch the gradient field of the function $f(x_1, x_2) = x_1 x_2$ - 5. Let X and Y be smooth vector fields along parametrized curve $\alpha: I \to \mathbb{R}^{n+1}$ and let $f: I \to R$ be smooth function along α . Verify that $(X + Y) = \dot{X} + \dot{Y}$ - 6. Show that the unit n-sphere $x_1^2 + x_2^2 + \cdots + x_{n+1}^2 = 1$ is connected for n > 1 - 7. Sketch the cylinder over the graph $f(x) = \sin x$ - 8. Show that the two orientations on the unit n-sphere $x_1^2 + x_2^2 + \cdots + x_{n+1}^2 = 1$ are given $byN_1(p) = (p, p)$ and $N_2(p) = (-p,p)$ - 9. Compute $\nabla_v f$ where $f: \mathbb{R}^{n+1} \to \mathbb{R}$ and $v \in \mathbb{R}^{n+1}_p$, $p \in \mathbb{R}^{n+1}$ are given by $$f(x_1, x_2) = 2x_1^2 + 3x_2^2, v = (1,0,2,1)$$ - 10. Let S be an n-surface in \mathbb{R}^{n+1} .let $\alpha: I \to S$ be a parametrized curve and let X and Y are vector fields tangent to S along α . Verify that (fX)' = f'X + fX' - 11. Show that the two orientations on the unit n-sphere $x_1^2 + x_2^2 + \cdots + x_{n+1}^2 = 1$ are given by $N_1(p) = (p, p)$ and $N_2(p) = (-p, p)$ - 12. Find the length of the parametrized curve $\alpha: I \to \mathbb{R}^{n+1}$ given by $$\alpha(t) = (t^2, t^3), l = [0, 2], n = 1$$ 13. Find the Gaussian curvature $K: S \to R$ where S is given by $$\left(\frac{x_1^2}{a^2}\right) + \left(\frac{x_2^2}{b^2}\right) - \left(\frac{x_3^2}{c^2}\right) = 0,$$ 14. Define oriented n-surface. Give an example. $(14 \times 1 = 14 \text{ weightage})$ #### Part B Answer any seven questions. Each question carries 2 weightage. - 15. Find the integral curve through p=(1,1) of the vector field $X(x_1, x_2) = (x_2, x_1)$ - 16. Let U be an open set in \mathbb{R}^{n+1} and let $f: U \to \mathbb{R}$ be smooth. Let $p \in U$ be a regular point of f, and let c = f(p). Then show that the set of all vectors tangent to f^{-1} p is equal to $[\nabla f(p)]^{\perp}$. - 17. Show that the set S of all unit vectors at all points of R² forms a 3-surface in R⁴. - 18. Sketch the tangent space at a typical point of the level set $f^{-1}(1)$ where $$f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2$$ - 19. Prove that, in an n-phase, parallel transport is path independent. - 20. Let S be a compact connected oriented n- surface in \mathbb{R}^{n+1} . Then show that the G Kronecker curvature K(p) of S at p is non-zero for all $p \in S$ if and only if the sec fundamental form s_p of S at p is definite for all $p \in S$ - 21. Show that the unit n- sphere $x_1^2 + x_2^2 + \dots + x_{n+1}^2 = 1$ is connected if n > 1. - 22. Let S be an oriented n-surface in \mathbb{R}^{n+1} which is convex at $p \in S$. Show that the s fundamental form of S at p is semi-definite. - 23. Let S be the unit n-sphere $\sum_{i=1}^{n+1} x_i^2 = 1$ oriented by the outward unit normal vect field. Prove that the Weingarten map of S is multiplication by -1. - 24. State and prove the Inverse function theorem for n-surfaces. (7 \times 2 = 14 weigh ### Pari C Answer any two questions. Each question carries 4 weightage - 25. Let S be a compact connected oriented n-surface in Rⁿ⁺¹ exhibited as a level set $f^{-1}(c)$ of a smooth function $f: \mathbb{R}^{n+1} \to \mathbb{R}$ with $\nabla f(p) \neq 0$ for all $p \in S$. Then s that the Gauss map maps S onto the unit sphere Sⁿ. - 26. Let S be an n-surface in R^{n+1} , let $p \in S$ and $e \in Sp$. Then show that there exist an interval containing 0 and a geodesic $\alpha: I \to S$ such that - $\alpha(0) = p$ and $\dot{\alpha}(0) = v$ - If $\beta: \tilde{I} \to S$ is any other geodesic in S with $\beta(0) = p$ and $\dot{\beta}(0) = v$, th $\tilde{I} \subset I$ and $\beta(t) = \alpha(t)$ of all $t \in \tilde{I}$ - 27. (i) Let S be an n-surface in \mathbb{R}^{n+1} , oriented by the unit vector field N. Let $p \in Sa$ $v \in Sp$. Then show that for every parametrized curve $\alpha: I \to S$, with $\dot{\alpha}(t_0) =$ some $t_0 \in I$, $\ddot{\alpha}(t_0)$. $N(p) = L_p(v)$. v - (ii) Show that the Weingarten $mapL_p$ is self adjoint. - 28. Let S be an n-surface in \mathbb{R}^{n+1} and let $p \in S$. Then there exists an open set V at in \mathbb{R}^{n+1} and a parametrized n-surface $\varphi: U \to \mathbb{R}^{n+1}$ such that φ is one to one m from U onto $V \cap S$. 29 | 1 | MA | M1 | 82 | 00 | |---|--------|------|----|----| | Æ | A 2 -4 | 1111 | UL | UU | | (Pages | : | 2) | |---------|---|----| | 11 4500 | • | - | | Reg. | No | | | | | | | | | | | | | | | |------|----|--|--|--|--|--|--|--|--|--|--|--|--|--|--| | | | | | | | | | | | | | | | | | ### FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE ### Fourth Semester M.Sc Degree Examination, March 2018 MT4E03 – Measure & Integration (2016 Admission onwards) Max. Time: 3 hours p ag Max. weightage: 36 ## Part A (Answer all questions (1-14). Each questions has one weightage .) - Define a continuous function and give an example. - 2. Give an example of a Borel function. - Does there exist an infinite σ algebra which has only countably many members? Prove your claim. - 4. Show that the supremum of any collection of lower semicontinuous function is lower semicontinuous. - 5. Show that the range of any $f \in C_c(X)$ is a compact subset of the complex plane. - 6. Define regular measure and give an example. - 7. Define σ -finite measure and give an example. - 8. Is every Lebesgue measurable set a Borel set? Prove your claim. - 9. Is it true that every compact subset of \mathbb{R}^1 is the support of a continuous function? Prove your claim. - 10. Let μ and λ be complex measures on the same σ algebra M. Prove or disprove that $\mu + \lambda$ is a complex measure. - 11. What do you mean by Jordan decomposition of a real measure. - 12. What do you mean by polar representation of a complex measure. - 13. Explain the meaning of " $L^q(\mu)$ is isometrically isomorphic to the dual space of $L^p(\mu)$ " - 14. Define measurable rectangle and give an example. $(14 \times 1 = 14 \text{ weightage})$ #### Part B ## (Answer any seven from the following ten questions (15-24). Each questions has weightage 2.) - Define positive measure and give an example. Also prove that positive measure is 15. monotonic and finitely additive. - State and prove Fatou's Lemma. 16. - If $f \in L^1(\mu)$ then prove that $\left| \int_X f d\mu \right| \le \int |f| d\mu$. 17. - Suppose $f: X \to [0, \infty]$ is measurable and $E \in M$, and $\int_E \int d\mu = 0$. Then prove the 18. f = 0. - Prove that if f is a real function on a measurable space X such that $\{x: f(x) \ge r\}$ is 19. measurable for every rational r, then prove that f is measurable. - In a topological space show that a closed subset of a compact space is compact. 20. - Let X be a locally compact Hausdorff space in which every open set is σ compact 21. λ be any positive measure on X such that $\lambda(K) < \infty$ for every compact set K. Then prove that λ is regular. - State and prove Lusin's theorem. 22. - Suppose μ is a positive measure on M, $g \in L^1(\mu)$, and $\lambda(E) = \int_E g d\mu$, $(E \in M)$ the 23. prove that $|\lambda|(E) = \int_{E} |g| d\mu$, $(E \in M)$. - If $f \in L^1(\mathbb{R}^k)$, then, then prove that almost every $x \in \mathbb{R}^k$ is a Lebesgue point of f. 24 $(7 \times 2 = 14 \text{ weight$ #### Part C ### (Answer any two from the following questions (25-28). Each questions has weightage 4.) - (a) Give an example of a σ compact space and prove your claim. 25. - (b) State and prove the Vitali-Caratheodory theorem. - State and prove the Lebesgue-Radon-Nikodym Theorem. 26. - Let I = [a, b], let $f: I \to \mathbb{R}^1$ be continuous and nondecreasing. Then prove that each 27. the following three statements about f implies the other two: - a) f is AC on I. - b) f maps sets of measure 0 to sets of measure 0. - c) f is differentiable a.e. on I, $f \in L^1$, and $f(x) f(a) = \int_a^x f'(t)dt (a \le x \le b)$. - (a) Prove or disprove that the product measure is complete. 28. - (b) Define convolution product of two $L^1(\mathbb{R}^1)$ functions and prove that it is again in $(2 \times 4 = 8 \text{ weig})$ $L^1(\mathbb{R}^1)$. 1M4M18201 (Pages: 1) | Reg. | No | · | | | | | | | | | | | ٠ | * | | | |------|------|---|--|--|--|--|--|--|--|--|--|--|---|---|--|--| | Nam | e: . | | | | | | | | | | | | | | | | #### FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE #### Fourth Semester M.Sc Degree Examination, March 2018 MT4E07 – Computer Oriented Numerical Analysis (2016 Admission onwards) Max. Time: 1 1/2 hours Max. weightage: 18 ## Part A (Short Answer Questions) (Answer all questions. Each question has weightage 1) - 1. Draw a flow chart to find the H.C.F of two numbers. - 2. Write a C++ program to evaluate Euler totient function. - 3. What is meant by white space in C++ program. - 4. Write a C++ program that uses for loop. - 5. Write a short note on user defined functions in C++. - 6. Write an algorithm to find the biggest from among n numbers. (6x1=6 weightage) #### Part B (Answer any four from the following six questions. Each question has weightage 2) - 7. Write a C++ program that uses arrays. - 8. Write an algorithm to find the $\int_{a}^{b} f(x)dx$ using trapezoidal rule. - 9. Explain Lagrange's interpolation algorithm. - 10. Write an algorithm to solve the initial value problem using Runge Kutta method. - 11. Write an algorithm for finding the integral of tabulated values. - 12. Write an algorithm to find the dominant eigenvalue of a square matrix. (4x2=8 weightage) #### Part C Answer any one from the following two questions. Each question has weightage 4 - 13. Write an algorithm and C++ programme to solve a system of equation having n equation and n unknowns. - 14. Write an algorithm and C++ programme to find the integral using tabulated values by the method of Simpson rule. (1x4=4 weightage)