						-
1	A/I	1	M	15	11	98
	10.5	-	LYL		7 J.	10

27

(Pages: 2)

Reg.	No:	 													
Nam	۵.														

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester M.Sc Degree Examination, March 2018 MT4C15 – Functional Analysis II

(2016 Admission onwards)

Max. Time: 3 hours

Max. weightage: 36

PART A Answer all questions Each question carries 1 weightage

- 1. State open mapping theorem.
- 2. Let X be a normed space over K and $A \in BL(X)$, then prove that $\sigma(A^{-1}) = \{k^{-1} : k \in \sigma(A)\}$.
- 3. Let X and Y be normed spaces and $F \in BL(X,Y)$. Define transpose of F.
- 4. Show that every reflexive normed space is a Banach space.
- If X is a finite dimensional strictly convex normed space. Prove that X is uniformly convex.
- Let $\{u_1, u_2,\}$ be an orthonormal set in an inner product space X and $f \in X'$. Prove that $\sum_{n} |f(u_n)|^2 \le ||f||^2$.
- 7 Let H be a Hilbert space. $A \in BL(H)$ be irrivertible, prove that $(A^*)^{-1} = (A^{-1})^*$.
- Let H be a Hilbert space and $A, B \in BL(H)$ be self-adjoint prove that AB is self-adjoint if and only if A and B commute.
- Let H be a Hilbert space and $A \in BL(H)$, then prove that $k \in \sigma(A)$ if and only if $\overline{k} \in \sigma(A^*)$
- 10. Let $A \in BL(H)$ be normal. Prove that eigen vectors corresponding to distinct eigen values are orthogonal.
- 11. Prove that numerical range and $A \in BL(H)$ need not be closed.
- Let $H = K^2$ and the operator A on H defined by the matrix $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. Find $\sigma(A)$.
- 13. Let $A \in BL(CH)$ be a Hilbert-Schmidt operator, then prove that A^* is a Hilbert-Schmidt operator.
- 14 Define a compact linear map on a normed space

 $(14 \times 1 = 14 \text{ weightage})$

PART B

Answer any seven questions Each question carries 2 weightage

- 15. Let X and Y be normed spaces and $F: x \to y$ be linear. Prove that F is an open mather exists some t > 0 such that for every $y \in y$, there is some $x \in x$ with F(x) = y and $||x|| \le r ||y||$.
- 16 State and prove Bounded Inverse theorem.
- 17 Let X be a Banach space. Prove that the set of all invertible operators is open in BL
- Let X and Y be normed spaces and $F \in BL(X,Y)$. Prove that $F''J_x = J_yF$, where and J_y are the canonical embedding of X and Y into X'' and Y'' respectively.
- 19 For $1 , prove that <math>l^p$ is reflexive.
- 20. Let H be a Hilbert space and $f \in H'$. Prove that there is a unique $y \in H$ such that $f(x) = \langle x, y \rangle, x \in H$
- 21. Let H be a Hilbert space and $A \in BL(H)$. Find a relation connecting adjoint A^* an transpose A' of A.
- 22 If $A \in BL(H)$ and A^* is bounded below, prove that R(A)=H.
- 23 IF $A \in BL(H)$ be normal, prove that $||A^2|| = ||A^*A|| ||A||^2$
- 24. Let $H \neq \{0\}$ and $A \in BL(H)$ be compact and self- adjoint, prove that ||A|| OR -||A|| eigen value of A.

 $(7 \times 2 = 14 \text{ weig})$

PART C

Answer any two questions Each question carries 4 weightage

- 25 State and prove closed Graph theorem.
- Let X be a normed space and $A \in BL(X)$ be of finite rank. Prove that $\sigma_e(A) = \sigma_a(A) = \sigma_a(A)$
- 27. Let $A \in BL(H)$ be self- adjoint. Prove that A or -A is a positive operator if and or $|\langle Ax, y \rangle|^2 \le \langle Ax, x \rangle < Ay, y \rangle$ for all $x, y \in H$.
- State and prove finite dimensional spectral theorem for self adjoint or normal oper $(2 \times 4 = 8)$ weight

Reg. No:.... Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester M.Sc Degree Examination, March 2018 MT4C16 - Differential Geometry

(2016 Admission onwards)

Max. Time: 3 hours

Max. Weightage: 36

Part A Answer All questions. Each question carries 1 weightage

- 1. Sketch the vector field on R^2 : Where X(p) = -p
- 2. Show that the graph of any function $f: \mathbb{R}^n \to \mathbb{R}$ is a level set for some function $F: \mathbb{R}^{n+1} \to \mathbb{R}$.
- 3. Sketch the cylinder $f^{-1}(0)$ where $f(x_1, x_2) = x_1$.
- 4. Find and sketch the gradient field of the function $f(x_1, x_2) = x_1 x_2$
- 5. Let X and Y be smooth vector fields along parametrized curve $\alpha: I \to \mathbb{R}^{n+1}$ and let $f: I \to R$ be smooth function along α . Verify that $(X + Y) = \dot{X} + \dot{Y}$
- 6. Show that the unit n-sphere $x_1^2 + x_2^2 + \cdots + x_{n+1}^2 = 1$ is connected for n > 1
- 7. Sketch the cylinder over the graph $f(x) = \sin x$
- 8. Show that the two orientations on the unit n-sphere $x_1^2 + x_2^2 + \cdots + x_{n+1}^2 = 1$ are given $byN_1(p) = (p, p)$ and $N_2(p) = (-p,p)$
- 9. Compute $\nabla_v f$ where $f: \mathbb{R}^{n+1} \to \mathbb{R}$ and $v \in \mathbb{R}^{n+1}_p$, $p \in \mathbb{R}^{n+1}$ are given by

$$f(x_1, x_2) = 2x_1^2 + 3x_2^2, v = (1,0,2,1)$$

- 10. Let S be an n-surface in \mathbb{R}^{n+1} .let $\alpha: I \to S$ be a parametrized curve and let X and Y are vector fields tangent to S along α . Verify that (fX)' = f'X + fX'
- 11. Show that the two orientations on the unit n-sphere $x_1^2 + x_2^2 + \cdots + x_{n+1}^2 = 1$ are given by $N_1(p) = (p, p)$ and $N_2(p) = (-p, p)$
- 12. Find the length of the parametrized curve $\alpha: I \to \mathbb{R}^{n+1}$ given by

$$\alpha(t) = (t^2, t^3), l = [0, 2], n = 1$$

13. Find the Gaussian curvature $K: S \to R$ where S is given by

$$\left(\frac{x_1^2}{a^2}\right) + \left(\frac{x_2^2}{b^2}\right) - \left(\frac{x_3^2}{c^2}\right) = 0,$$

14. Define oriented n-surface. Give an example.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any seven questions.

Each question carries 2 weightage.

- 15. Find the integral curve through p=(1,1) of the vector field $X(x_1, x_2) = (x_2, x_1)$
- 16. Let U be an open set in \mathbb{R}^{n+1} and let $f: U \to \mathbb{R}$ be smooth. Let $p \in U$ be a regular point of f, and let c = f(p). Then show that the set of all vectors tangent to f^{-1} p is equal to $[\nabla f(p)]^{\perp}$.
- 17. Show that the set S of all unit vectors at all points of R² forms a 3-surface in R⁴.
- 18. Sketch the tangent space at a typical point of the level set $f^{-1}(1)$ where

$$f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2$$

- 19. Prove that, in an n-phase, parallel transport is path independent.
- 20. Let S be a compact connected oriented n- surface in \mathbb{R}^{n+1} . Then show that the G Kronecker curvature K(p) of S at p is non-zero for all $p \in S$ if and only if the sec fundamental form s_p of S at p is definite for all $p \in S$
- 21. Show that the unit n- sphere $x_1^2 + x_2^2 + \dots + x_{n+1}^2 = 1$ is connected if n > 1.
- 22. Let S be an oriented n-surface in \mathbb{R}^{n+1} which is convex at $p \in S$. Show that the s fundamental form of S at p is semi-definite.
- 23. Let S be the unit n-sphere $\sum_{i=1}^{n+1} x_i^2 = 1$ oriented by the outward unit normal vect field. Prove that the Weingarten map of S is multiplication by -1.
- 24. State and prove the Inverse function theorem for n-surfaces. (7 \times 2 = 14 weigh

Pari C Answer any two questions. Each question carries 4 weightage

- 25. Let S be a compact connected oriented n-surface in Rⁿ⁺¹ exhibited as a level set $f^{-1}(c)$ of a smooth function $f: \mathbb{R}^{n+1} \to \mathbb{R}$ with $\nabla f(p) \neq 0$ for all $p \in S$. Then s that the Gauss map maps S onto the unit sphere Sⁿ.
- 26. Let S be an n-surface in R^{n+1} , let $p \in S$ and $e \in Sp$. Then show that there exist an interval containing 0 and a geodesic $\alpha: I \to S$ such that
 - $\alpha(0) = p$ and $\dot{\alpha}(0) = v$
 - If $\beta: \tilde{I} \to S$ is any other geodesic in S with $\beta(0) = p$ and $\dot{\beta}(0) = v$, th $\tilde{I} \subset I$ and $\beta(t) = \alpha(t)$ of all $t \in \tilde{I}$
- 27. (i) Let S be an n-surface in \mathbb{R}^{n+1} , oriented by the unit vector field N. Let $p \in Sa$ $v \in Sp$. Then show that for every parametrized curve $\alpha: I \to S$, with $\dot{\alpha}(t_0) =$ some $t_0 \in I$, $\ddot{\alpha}(t_0)$. $N(p) = L_p(v)$. v
 - (ii) Show that the Weingarten $mapL_p$ is self adjoint.
- 28. Let S be an n-surface in \mathbb{R}^{n+1} and let $p \in S$. Then there exists an open set V at in \mathbb{R}^{n+1} and a parametrized n-surface $\varphi: U \to \mathbb{R}^{n+1}$ such that φ is one to one m from U onto $V \cap S$.

29

1	MA	M1	82	00
Æ	A 2 -4	1111	UL	UU

(Pages	:	2)
11 4500	•	-

Reg.	No														

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester M.Sc Degree Examination, March 2018 MT4E03 – Measure & Integration

(2016 Admission onwards)

Max. Time: 3 hours

p

ag

Max. weightage: 36

Part A (Answer all questions (1-14). Each questions has one weightage .)

- Define a continuous function and give an example.
- 2. Give an example of a Borel function.
- Does there exist an infinite σ algebra which has only countably many members? Prove your claim.
- 4. Show that the supremum of any collection of lower semicontinuous function is lower semicontinuous.
- 5. Show that the range of any $f \in C_c(X)$ is a compact subset of the complex plane.
- 6. Define regular measure and give an example.
- 7. Define σ -finite measure and give an example.
- 8. Is every Lebesgue measurable set a Borel set? Prove your claim.
- 9. Is it true that every compact subset of \mathbb{R}^1 is the support of a continuous function? Prove your claim.
- 10. Let μ and λ be complex measures on the same σ algebra M. Prove or disprove that $\mu + \lambda$ is a complex measure.
- 11. What do you mean by Jordan decomposition of a real measure.
- 12. What do you mean by polar representation of a complex measure.
- 13. Explain the meaning of " $L^q(\mu)$ is isometrically isomorphic to the dual space of $L^p(\mu)$ "
- 14. Define measurable rectangle and give an example.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

(Answer any seven from the following ten questions (15-24).

Each questions has weightage 2.)

- Define positive measure and give an example. Also prove that positive measure is 15. monotonic and finitely additive.
- State and prove Fatou's Lemma. 16.
- If $f \in L^1(\mu)$ then prove that $\left| \int_X f d\mu \right| \le \int |f| d\mu$. 17.
- Suppose $f: X \to [0, \infty]$ is measurable and $E \in M$, and $\int_E \int d\mu = 0$. Then prove the 18. f = 0.
- Prove that if f is a real function on a measurable space X such that $\{x: f(x) \ge r\}$ is 19. measurable for every rational r, then prove that f is measurable.
- In a topological space show that a closed subset of a compact space is compact. 20.
- Let X be a locally compact Hausdorff space in which every open set is σ compact 21. λ be any positive measure on X such that $\lambda(K) < \infty$ for every compact set K. Then prove that λ is regular.
- State and prove Lusin's theorem. 22.
- Suppose μ is a positive measure on M, $g \in L^1(\mu)$, and $\lambda(E) = \int_E g d\mu$, $(E \in M)$ the 23. prove that $|\lambda|(E) = \int_{E} |g| d\mu$, $(E \in M)$.
- If $f \in L^1(\mathbb{R}^k)$, then, then prove that almost every $x \in \mathbb{R}^k$ is a Lebesgue point of f. 24 $(7 \times 2 = 14 \text{ weight$

Part C

(Answer any two from the following questions (25-28). Each questions has weightage 4.)

- (a) Give an example of a σ compact space and prove your claim. 25.
 - (b) State and prove the Vitali-Caratheodory theorem.
- State and prove the Lebesgue-Radon-Nikodym Theorem. 26.
- Let I = [a, b], let $f: I \to \mathbb{R}^1$ be continuous and nondecreasing. Then prove that each 27. the following three statements about f implies the other two:
 - a) f is AC on I.
 - b) f maps sets of measure 0 to sets of measure 0.
 - c) f is differentiable a.e. on I, $f \in L^1$, and $f(x) f(a) = \int_a^x f'(t)dt (a \le x \le b)$.
- (a) Prove or disprove that the product measure is complete. 28.
 - (b) Define convolution product of two $L^1(\mathbb{R}^1)$ functions and prove that it is again in $(2 \times 4 = 8 \text{ weig})$ $L^1(\mathbb{R}^1)$.

1M4M18201

(Pages: 1)

Reg.	No	·											٠	*		
Nam	e: .															

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester M.Sc Degree Examination, March 2018 MT4E07 – Computer Oriented Numerical Analysis

(2016 Admission onwards)

Max. Time: 1 1/2 hours

Max. weightage: 18

Part A (Short Answer Questions) (Answer all questions. Each question has weightage 1)

- 1. Draw a flow chart to find the H.C.F of two numbers.
- 2. Write a C++ program to evaluate Euler totient function.
- 3. What is meant by white space in C++ program.
- 4. Write a C++ program that uses for loop.
- 5. Write a short note on user defined functions in C++.
- 6. Write an algorithm to find the biggest from among n numbers.

(6x1=6 weightage)

Part B

(Answer any four from the following six questions. Each question has weightage 2)

- 7. Write a C++ program that uses arrays.
- 8. Write an algorithm to find the $\int_{a}^{b} f(x)dx$ using trapezoidal rule.
- 9. Explain Lagrange's interpolation algorithm.
- 10. Write an algorithm to solve the initial value problem using Runge Kutta method.
- 11. Write an algorithm for finding the integral of tabulated values.
- 12. Write an algorithm to find the dominant eigenvalue of a square matrix.

(4x2=8 weightage)

Part C

Answer any one from the following two questions. Each question has weightage 4

- 13. Write an algorithm and C++ programme to solve a system of equation having n equation and n unknowns.
- 14. Write an algorithm and C++ programme to find the integral using tabulated values by the method of Simpson rule.

(1x4=4 weightage)