17

1M4M20212

(Pages : 2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester M.Sc Degree Examination, March/April 2020 MPHY4E3(6) – Microprocessors & Applications

(2018 Admission onwards)

Time: 3 hours

Max. Weightage: 36

Section A Answer all questions. Each question carries 1 weightage

- 1. What is an assembler?
- 2. Write an assembly language program to find the difference between two 8-bit numbers
- 3. What is one's complement of a number? Give an example.
- 4. Define timing diagram.
- 5. What is memory interfacing?
- 6. What is DMA?
- 7. Briefly discuss the features of programmable interrupt controller.
- 8. What is a control word?
- 9. Define acquisition time & aperture time.
- 10. How can a microprocessor-based system be used for resistance measurement?
- 11. What is a thermistor?
- 12. Distinguish between microprocessor and microcontroller.

 $(12\times1=12 \text{ weightage})$

Section B Answer two questions. Each question carries 6 weightage.

- 13. Draw the architecture of 8085 microprocessor and explain the various functional
- 14. Discuss the programmed data transfer and direct memory access data transfer schemes with necessary examples.
- 15. Discuss the various modes of operations of programmable peripheral interface 8255.
- 16. Describe the working of 7 segment units to display alphabets & digits.

 $(6\times2=12 \text{ weightage})$

Section C Answer four questions. Each question carries 3 weightage.

- 17. Write an assembly language program to sort an array of numbers in ascending
- 18. Draw the timing diagram for the Memory Read machine cycle.
- 19. Discuss the programmable communication interface 8251.
- 20. Explain the temperature measurement & control based on a microprocessor tec
- What is Sample and Hold circuit? Discuss how it is interfaced with analog multiplexer in ADC 0800.
- 22. Discuss the important registers in 8051 microcontroller.

 $(3 \times 4 = 12 \text{ weight})$

18

M	IVI	71	12	11
TAT	ATAT	1	J 100	

Pages: 2)	Reg. No:
	Name of the last o

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester M.Sc Degree Examination, March/April 2020 MPHY4E2(6) – Laser and Fibre Optics

(2018 Admission onwards)

Time: 3 hours

Max. Weightage: 36

Section A (Answer ALL questions, each carries weightage 1)

- 1. Write a short note on Q -switching of lasers.
- 2. What is meant by natural line broadening in lasers?
- 3. Discuss Second Harmonic Generation of Light?
- 4. What is meant by numerical aperture of optical fibers?
- 5. Discuss mode locking technique in laser cavity.
- 6. Draw energy level diagram of a four level Laser system.
- 7. What are the different attenuation measurement techniques for fibers?
- 8. Discuss about leaky modes.
- 9. What are the advantages of graded index optical fibers?
- 10. What are stable resonators?
- 11. Distinguish between mono mode and multimode fiber.
- 12. Write a short note on Laser fusion.

 $(12 \times 1 = 12 \text{ weightage})$

Section B (Answer ANY TWO questions, each carries weightage 6)

- 13. With the help of energy level diagram ,explain excitation mechanism and laser structure of a He-Ne laser
- 14. Analyse the optical resonators using geometrical optics and hence obtain the condition to be satisfied for a stable resonator.
- 15. Discuss the major signal degradation in optical fibers.
- 16. Analyse light propagation through optical fibers using Maxwell's equations.

 $(2 \times 6 = 12 \text{ weightage})$

Section C (Answer any FOURquestions, each carries weightage 3)

- 17. A Laser produces 10mW beam of light at 632.8 nm .Find the number of photons emitted by the laser in each second.
- 18. The cavity of a 6328 A⁰ laser is 1 m long and has mirror of reflections 100% and 97.5% with negligible internal cavity losses (a) what is the cavity life time (b) If the output of Laser is 50 mW, calculate the energy inside the cavity.
- 19. Find the acceptance angle and numerical aperture of an optical fiber with a clad index of 1.378 and a core index of 1.546
- 20. Find the laser fusion energy released from a deuterium pellet with a factional burn up of the fuel f = 0.045. (Mass of the deuteron is $2 \times 1.66 \times 10^{-27} \text{g}$)
- 21. Find the longitudinal mode spacing of a laser resonator of cavity length d=100 cm. Assume cavity is filled with free space.
- 22. Calculate the percent of power lost when light moves from air to glass when the angle of incidence is 0°.

(4 x3 = 12 weightage)

10)

STOCK CO.		1000	~
M4	100	1171	43
V 1 -1	V I Z	1121	13

	400
Parrec	7)
(Pages	4)

Reg. No:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester M.Sc Degree Examination, March/April 2020 MPHY4B12 – Atomics and Molecular Spectroscopy

(2018 Admission onwards)

Time: 3 hours

Max. Weightage: 36

Section A Answer all questions, each has weightage 1.

- What is the importance of Lande g factor?
- Comment on Larmor precession.
- Explain why the rotational spectrum of symmetric top molecule is independent of quantum number K.
- How the knowledge of centrifugal distortion constant helps one to determine the force constant of a bond?
- . Explain inverse Raman scattering.
- Intense light sources are needed for the observation of nonlinear Raman Effect. Why?
- 7. What is Fortrat parabola?
- Explain Hunde's rule with example.
- O. Comment on Lande g factor.
- 0. Describe the classification of molecules based on their moments of inertia with examples.
- 1. Comment on 'hot bands' in IR spectra.
- 12. Explain mutual exclusion principle.

 $(12 \times 1 = 12 \text{ weightage})$

Section B Answer any two questions, each has weightage 6.

- 13. Explain the L-S and J-J coupling schemes in a strong magnetic field with the help of a vector model.
- 14. Obtain an expression for the vibration levels of a diatomic molecule. Derive expressions for the frequencies of fundamental absorptions, first and second overtones.

- 15. Describe the theory of ESR and explain the origin of hyperfine structure with one example.
- 16. Describe the classical and quantum theory of Raman Effect. Explain the difference between CARS and PARS

 $(2\times6=12 \text{ weightage})$

Section C Answer any four questions, each has weightage 3.

- 17. Calculate the energy in cm⁻¹ of the photon absorbed when NO molecule goes from the state v=0, J''=0, to v=1, J'=1. Assume the v=0 and v=1 states have the same B values. Given $\bar{v}_e=1904~cm^{-1}x_e=0.00733$, $r_{NO}=0.1151~nm$.
- 18. The first line in the pure rotational spectrum of ¹H³⁵Cl appears at 21.18 cm⁻¹. Find the value of the rotational constant for ²D³⁵Cl. Given the atomic mass of D as 2.015 amu. Assume that the bond length in DCl is same as that in HCl.
- 19. The fundamental and first overtone transitions of $^{14}N^{16}O$ are centered on 1876.06 cm⁻¹ and 3724.20 cm⁻¹ respectively. Evaluate the equilibrium vibration frequency, the anharmonicity constant, zero point energy and force constant of the molecule. [mass of $^{14}N = 23.25 \times 10^{-27} \, \text{kg}$, mass of $^{16}O = 26.56 \times 10^{-27} \, \text{kg}$]
- Explain the intensity of vibrational electronic spectra with help of Frank Condon principle.
- 21. Calculate the recoil velocity and energy of the free Mössbauer nucleus 57 Fe when emitting a γ -ray of frequency 3.5 x 10^{18} Hz. What is the Doppler shift of the γ -ray frequency to an outside observer? Avogadro's number = 6.023×10^{23} mol⁻¹.
- 22. Electron spin resonance is observed for atomic hydrogen with an instrument operating at 9.5 GHz. If the **g** value for the electron in the hydrogen atom is 2.0026, and given that $\mu_B=9.274\times10^{-24}$ JT⁻¹. Calculate the applied magnetic field

 $(4\times3=12 \text{ weightage})$