α 7

1	٨	4	3	N	1	9	2	0	2
3	-17	-12	J	41.0	ж.	Æ.	,ee	w.	-

(Pages: 3)	Reg. No:
	Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc. Mathematics Degree Examination, November 2019 MT3C14 – Functional Analysis

(2018 Admission onwards)

Time: 3 hours - Max. Weightage: 36

PART A Answer all questions (Each question has weightage 1.)

- 1. Show that $d_{\infty}(x, y) = \sup_{t \in T} |x(t) y(t)|$ defines a metric on the set of all *K*-valued bounded functions on some set *T*.
- 2. Is C([0,1]) with p-norm a Banach space? Justify.
- 3. Show that ℓ^{∞} is not separable.
- 4. Give an example to show that a subspace of an infinite dimensional normed space need not be closed.
- 5. If X is a normed space and (x_n) is a Cauchy sequence in X, then show that the scalar sequence $(||x_n||)$ converges.
- 6. Let X be a normed space and $x, y \in X$, r > 0. Then prove that U(x + y, r) = U(x, r) + y.
- 7. If X is a normed space over $K, f \in X'$ and $f \neq 0$ and if $a \in X$ with f(a) = 1 and r > 0. Then show that $U(a, r) \cap Z(f) = \phi$ if and only if $||f|| \leq \frac{1}{r}$.
- 8. If all bounded linear functionals on a normed space X vanishes at a given point x of X, then prove that x must be zero.
- 9. How a normed space X can be viewed as a subspace of its second dual X"?
- 10. Define Schauder basis. Give one example.
- 11. Give an example to show that the completeness condition on X cannot be dropped in the uniform boundedness principle

- 12. Give an example for a closed, linear map which is not continuous.
- 13. Show that among all the *p*-norms, $\|.\|_p$ $1 \le p \le \infty$, on K^n $(n \ge 2)$, only the norm $\|.\|_2$ is induced by an inner product.
- 14. Show that the set $\left\{\frac{e^{\text{int}}}{\sqrt{2\pi}}; n = 0, \pm 1, \pm 2, \ldots\right\}$ is an orthonormal set in $L^2([-\pi, \pi])$.

 $(14 \times 1 = 14 \text{ weightage})$

PART B Answer any seven questions (Each question has weightage 2.)

- 15. Show that the metric space ℓ^{∞} is complete.
- 16. If $\|.\|$, $\|.\|'$ are any two norms on a linear space X, then prove that the norm, $\|.\|$ is stronger than $\|.\|'$ if and only if there exists $\alpha > 0$ such that $\|x\|' \le \alpha \|x\|$ $\forall x \in X$.
- 17. For $F \in BL(X, Y)$, define the operator norm, and show that

$$||F|| = \inf \left\{ \alpha \ge 0; \ ||F(x)|| \le \alpha ||x|| \text{ for all } x \in X \right\}.$$

- 18. Let X and Y be normed spaces and $F: X \to Y$ be a linear map. Show that F is continuous on X if and only if $||F(x)|| \le \alpha ||x||$ for all $x \in X$ and for some $\alpha > 0$.
- 19. Let X and Y be normed spaces and $X \neq \{0\}$. Then show that BL(X, Y) is a Banach space in the operator norm if and only if Y is a Banach space.
- 20. Prove that a Banach space cannot have a denumerable Hamel basis.
- 21. Let X and Y be normed spaces and $F: X \to Y$ be linear. Then prove that F is continuous if and only if $g \circ F$ is continuous, $\forall g \in Y'$.
- 22. If X is a normed space and if $P: X \to X$ is a projection, then show that P is a closed map if and only if the subspaces R(P) and Z(P) are closed in X.
- 23. Let X and Y be two inner product spaces and $F: X \to Y$ be linear. Show that $||F(x)|| = ||x||, \forall x \in X \Leftrightarrow \langle F(x_1), F(x_2) \rangle = \langle x_1, x_2 \rangle, \forall x_1, x_2 \in X$
- 24. If $\{u_{\alpha}\}$ is an orthonormal set in an inner product space X, then for any $x \in X$, show that the set $E_x = \{u_{\alpha}; \langle x, u_{\alpha} \rangle \neq 0\}$ is a countable set.

 $(7 \times 2 = 14 \text{ weightage})$

PART C

Answer any two questions (Each question has weightage 4.)

- 25. If E is a measurable subset of R, prove that the spaces $(L^p(E), ||.||_p)$, $1 \le p \le \infty$ are all Banach spaces.
- 26. State Hahn Banach extension theorm. Show that for every subspace Y of a normed space X and every g in Y' there is a unique Hahn-Banach extension of g to X if and only if X' is strictly convex.
- 27. If X and Y are Banach spaces and if $F: X \to Y$ is a closed linear map, then prove that F is continuous.
- 28. (a) State and prove Schwarz inequality.
 - (b) State and prove Bessel's inequality.

 $(2 \times 4 = 8 \text{ weightage})$

IM3	N1	92	03
TATO	717	-	-

(Pages: 3)

Reg. No:

Name: ..

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc. Mathematics Degree Examination, November 2019 MT3C15 - PDE and Integral Equations

(2018 Admission onwards)

Time: 3 hours

Max. Weightage: 36

Section A

Answer ALL questions. Each question carries 1 weight.

- 1. If P(t): (x(t), y(t), z(t)) is a point on the surface S: z = F(x, y), then show that $\left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, -1\right)$ will be the direction ratios of the normal to the surface at the point P(t).
- 2. If F is an arbitrary function, obtain the pde corresponding to $z = x + y + F(x^2 + y^2)$.
- 3. Define the different types of first order partial differential equations.

 Give example of a semilinear pde that is not linear.
- 4. Show that $(x-a)^2 + (y-b)^2 + z^2 = 1$ is a complete integral of $z^2(1+p^2+q^2) = 1$.
- 5. Show that the Pfaffian differential equation $(y^2 + yz)dx + (xz + z^2)dy + (y^2 xy)dz = 0$ is integrable.
- 6. Write the complete integral of the $pde z = px + qy + p^3 + 2q^5$. Check that it is a complete integral.
- Describe the method to find the integral surface through a given curve corresponding to a
 quasilinear partial differential equation.
- 8. What is meant by Monge Cone at a point (x_0, y_0, z_0) corresponding to a non-linear first order partial differential equation f(x, y, z, p, q) = 0?
- 9. Identify the type of the equation $u_{xx} + 2u_{xy} + 17u_{yy} = 0$.
- 10. Describe the problem of vibration of a string of finite length along with the boundary conditions.

- State the Maximum and Minimum principles correponding to a harmonic function.
 Explain all terms used in the statement.
- 12. Prove that $\int_a^x \int_a^{x_n} \cdots \int_a^{x_3} int_a^{x_2} f(x_1) dx_1 dx_2 \cdots dx_{(n-1)} dx_n = \frac{1}{(n-1)!} \int_a^x (x-\zeta)^{(n-1)} f(\zeta) d\zeta$.
- 13. Describe the different types of integral equations. Give one example for each type.
- 14. State and prove the Abel's formula.

Section B

Answer any SEVEN questions. Each question carries 2 weights.

- 15. Prove that singular solution of a pde f(x, y, z, p, q) = 0 is obtained by eliminating p and q from the equations f(x, y, z, p, q) = 0, $f_p(x, y, z, p, q) = 0$ and $f_q(x, y, z, p, q) = 0$.
- 16. Find the general integral of $(z^2 2yz y^2)p + x(y+z)q = x(y-z)$.
- 17. Show that the equations xp yq = x and $x^2p + q = xz$ are compatible and find a one parameter family of common solutions.
- 18. Solve by Jacobi's method the equation $z + 2u_z = (u_x + u_y)^2$.
- 19. For the differential equation x(z+2)p + (xz+2yz+2y)q = z(z+1), find the integral surface passing through the curve $x_0 = s^2$, $y_0 = 0$ and $z_0 = 2s$.
- 20. Obtain the d'Alembert's solution of the problem of vibrations of an infinite string.
- Describe the Neumann problem.
 Prove that solution of the Neumann problem is unique upto the addition of a constant.
- 22. If y''(x) = F(x) and y satisfies the initial conditions $y(0) = y_0$ and $y'(0) = y'_0$, then show that $y(x) = \int_0^x (x \zeta)F(\zeta) d\zeta + y'_0 x + y_0$.
- 23. What is meant by characteristic values of a homogeneous Fredholm Integral Equation?
 Prove that the characteristic functions corresponding to two different characteristic values are orthogonal.

Find the resolvant kernel where the kernel of the integral equation is $K(x,\zeta) = 1 - 3x\zeta$ in the interval (0,1).

Section C

Answer any TWO questions. Each question carries 4 weights.

What is meant by the compatibility of two non-linear first order partial differential equations f(x,y,z,p,q) = 0 and g(x,y,z,p,q) = 0.

Describe the Charpit's method to find the complete integral of a first order partial differential equation. Find the complete integral of p+q-pq=0.

- 6. Explain the concept of initial strip corresponding to a partial differential equation and an inital data curve. Find the solution of the equation $z = \frac{1}{2}(p^2 + q^2) + (p x)(q y)$ which passes through the x-axis.
- 7. Discuss the problem of heat conduction in a finite rod. Solve $u_t = u_{xx}$, 0 < x < l, t > 0 with the boundary conditions u(0,t) = u(l,t) = 0 and the initial condition u(x,0) = x(l-x), $0 \le x \le l$.
- 28. For the integral equation $y(x) = \lambda \int_0^1 (1 3x\zeta)y(\zeta)d\zeta + F(x)$, write the *kernel*. Solve the equation by the method of separable kernel.

N19200

(Pages: 2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc. Mathematics Degree Examination, November 2019 MT3C12 – Multivariable Calculus & Geometry

(2018 Admission onwards)

e: 3 hours

Max. Weightage: 36

Part A Answer all questions (1 – 14) Each question has weightage 1

If $A \in L(\mathbb{R}^n, \mathbb{R}^m)$, show that A is uniformly continuous.

Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $f(x, y) = (e^x \cos y, e^x \sin y)$. Find $\left[f'\left(0, \frac{\pi}{2}\right)\right]$.

If $A \in L(X,Y)$ and $B \in L(Y,Z)$, where X, Y and Z are vector spaces, prove that

[BA] = [B][A].

State the implicit function theorem.

Does the curve $\gamma(t) = (\cos^2 t, \sin^2 t)$, $t \in \mathbb{R}$, has unit speed reparametrization? Explain.

If γ is a unit-speed curve, then prove that $\ddot{\gamma}$ is perpendicular to $\dot{\gamma}$.

Show that any reparametrization of a regular curve is regular.

Give a parameterization of the parabola $y = x^2$ which is not regular.

Find the curvature of the curve $\gamma(t) = \left(\frac{1}{3}(1+t)^{\frac{3}{2}}, \frac{1}{3}(1+t)^{\frac{3}{2}}, \frac{t}{\sqrt{2}}\right)$.

Prove that any open disc in the xy -plane is a surface.

If γ is a curve lying in the image of a surface patch σ , prove that $\langle \dot{\gamma}, \dot{\gamma} \rangle = E\dot{u}^2 + 2F\dot{u}v + G\dot{v}^2$.

Prove that the second fundamental form of a plane in \mathbb{R}^3 is zero.

If γ is a unit-speed curve on an oriented surface, prove that $\kappa_n = \langle \langle \dot{\gamma}, \dot{\gamma} \rangle \rangle$.

Give an example of a surface of which every point is an umbilic.

 $(14 \times 1 = 14 \text{ weightage})$

Part B Answer any seven questions (15 – 24) Each question has weightage 2

- 15. Prove that a linear operator A on a finite dimensional vector space X is one-to-one if and of the range of A is X.
- 16. Let Ω be the set of all linear operators in \mathbb{R}^n . Prove that Ω is an open subset of $L(\mathbb{R}^n)$.
- 17. Suppose f maps a convex open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m , f is differentiable in E and there is a number M such that $||f'(\mathbf{x})|| \le M$, for every $\mathbf{x} \in E$. Prove that $|f(b) f(a)| \le |b a|$ for $a, b \in E$.
- 18. Find the unit speed reparametrization of the curve $\gamma(t) = (e^t \cos t, e^t \sin t)$.
- 19. Let γ be a regular closed curve. Prove that a unit speed reparametrization of γ is closed.
- 20. Compute the torsion of the curve $\gamma(t)=(a\cos t,a\sin t,bt);\ t\in\mathbb{R}$, a and b are cons
- 21. Prove that the unit cylinder $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\}$ is a surface.
- 22. Compute the first fundamental form of the surface $\sigma(\theta, \varphi) = (\cos \theta \cos \varphi, \cos \theta \sin \varphi, \sin \varphi)$
- 23. State and prove Euler's theorem.
- 24. Define the elliptic, hyperbolic and parabolic points of a surface.

 $(7 \times 2 = 14 weightage)$

Part C Answer any two questions (25 – 28) Each question has weightage 4

- 25. Suppose **f** maps an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m . Prove that $\mathbf{f} \in \mathcal{C}'(E)$ if and only if the part derivatives $D_j f_i$ exist and are continuous on E for $1 \le i \le m, 1 \le j \le n$.
- 26. State and prove contraction principle.
- 27. a)Prove that the total signed curvature of a closed plane curve is an integer multiple of 21 b)Let γ be a curve in \mathbb{R}^3 with constant curvature and zero torsion. Prove that γ is a parametrization of (part of) a circle.
- 28. a) Let σ be a surface patch of an oriented surface S. With the usual notations, prove that matrix of Weingarten map with respect to the basis $\{\sigma_u, \sigma_v\}$ is $\mathcal{F}_1^{-1}\mathcal{F}_{11}$.
 - b) Find the principal curvatures and the corresponding principal vectors of the cylinder $\sigma(u, v) = (\cos v, \sin v, u)$.

 $(2 \times 4 = 8 weig)$

27

17	131	N1	92	0	1
1,117	1-		200		

(Pages: 2)

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc. Mathematics Degree Examination, November 2019 MT3C13 - Complex Analysis

(2018 Admission onwards)

Time: 3 hours

Max. Weightage: 36

Part A

Answer all questions

Each question carries 1 weightage

- 1. Map the left half plane Re z < 0 onto the unit disc |z| < 1.
- 2. If $T_1 z = \frac{z+2}{z+3}$ and $T_2 z = \frac{z}{z+1}$ find $T_1^{-1} T_2 z$.
- 3. What is the necessary condition for a mapping to be conformal.
- 4. Find the cross ratio of (1, -1, i, -i).
- 5. If z = x + iy, prove that $|e^z| = e^x$.
- 6. Prove that an integral over an arc depends only on the end points if the integral on an any closed curve is zero.
- 7. Prove that (C, a) = 0, C is a circle and a is any point outside C.
- 8. Identify the singularity of $\frac{z}{\cos z}$
- 9. Find the residue of the function $f(z) = \frac{z^2-2}{(z-2)^2}$ at z=2.
- 10. If f is analytic prove that $\ln(|f|)$ is harmonic.
- 11. Find the Taylor series expansion of the function $\frac{1}{z}about z = i$
- 12. Define a unimodular transformation
- 13. Prove that an elliptic function without poles is constant.
- 14. Prove that Weierstrass elliptic function $\mathcal{P}(z)$ is even.

 $(14 \times 1 = 14 \text{ Wt})$

Part B

Answer any seven questions

Each question carries 2 weightage

15. Prove that the set of all linear transformation form a group under the operation composition.

- 16. Prove that cross ratio is invariant under bilinear transformation.
- 17. If z and z^* are symmetric points with respect to the circle C where $C = \{z : |z a| = 1\}$ R, $0 < R < \infty$ show that $(z^* - a)(\bar{z} - \bar{a}) = R^2$.
- 18. Evaluate $\int_{|z|=2}^{1} \frac{1}{z^2+1} dz$.
- 19. State and prove Fundamental Theorem of Algebra.
- 20. Prove that an analytic function comes arbitrarily close to any complex value in every neighbourhood of an essential singularity.
- 21. Prove that a non constant harmonic function has neither maximum nor minimum on a region of definition. Consequently the maximum and minimum on a closed bounded set E are taken on the boundary of E.
- 22. State and prove Rouche's theorem.
- 23. Evaluate $\int_0^\infty \frac{1}{1+x^2} dx$
- 24. Prove that a non constant elliptic function has equally many poles as it has zeros

 $(7 \times 2 = 14 \text{ Wt})$

Part C

Answer any two questions

Each question carries 4 weightage

- 25. Suppose that $\emptyset(\zeta)$ is continuous on an arc γ . Then the function $F_n(z) = \int_{\gamma} \frac{\emptyset(\zeta) d\zeta}{(\zeta z)^n}$ is analytic in each of the region determined by γ and its derivative is $F_n'(z) = n F_{n+1}(z)$
- 26. Discuss the evaluation of integrals of the type $\int_{-\infty}^{\infty} R(x) e^{ix} dx$ using the residues.
- 27. State and prove Cauchy's General Theorem.
- 28. Show that the function $\mathcal{P}(z)$ satisfies an equation of the form $\mathcal{P}'(z)^{2} = 4 \mathcal{P}(z)^{3} - g_{2}\mathcal{P}(z) - g_{3}.$

(2 X 4 = 8 Wt)