6

	-	T. T.	4 200	040	-
7 1	4		1 /	11	1 3
	4.0	N	1		10

CVA	-
(Dagge	2.7
(Pages	41

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Degree Examination, November 2017 ST3C11 - Stochastic Process

(2016 Admission onwards)

Max. Time: 3 hours

Max. Weightage:36

PART A (Answer ALL Questions) Weightage 1 for each question

- Define stochastic process.
- 2. Define stationary process.
- 3. Show that the one step TPM of a Markov chain is stochastic
- 4. State and prove the memory less property of exponential distribution
- 5. Write down the postulates of a Poisson process
- 6. Define Compound Poisson process
- 7. Show that the renewal function $m(t) = \sum_{n=1}^{\infty} F_n(t), \forall t$, where $F_n(t) = P(S_n \le t), n \ge 1, \forall t$.
- 8. Define conditional mixed Poisson process
- 9. Show that the number of renewals by time $t \ge n$ if and only if the n^{th} renewal occurs on or before time t.
- 10. Distinguish between open and closed systems
- 11. Define Brownian motion process
- 12. Write down the steady state equations of Erlang's Loss system

 $(12 \times 1 = 12 \text{ weightage})$

PART B (Answer any EIGHT Questions) Weightage 2 for each question

- 13. Prove that Markov chain is completely determined by the one-step TPM and the initial distribution.
- 14. Show that state *i* is recurrent if $\sum_{n=1}^{\infty} p_{ii}^{(n)} = \infty$ and is transient if $\sum_{n=1}^{\infty} p_{ii}^{(n)} < \infty$.
- 15. Let $\{X_n, n = 1, 2, ...\}$ be a four step Markov chain with one step TPM $\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1/3 & 0 & 2/3 & 0 \end{bmatrix}$

Check whether the matrix is periodic.

- 16. Prove that the interval between two successive occurrences of a Poisson process follow exponential distribution
- 17. For a branching process show that $Q_n(s)=Q_1(Q_{n-1}(s))$.
- 18. Derive Pollock-Kinchins formule
- 19. Show that the renewal function satisfies renewal equation
- 20. Let S_n be the waiting time for the occurrence of n^{th} renewal and m(t) be the renewal function of renewal process. Show that $E\{S_{N(t)+1}\} = E(X_1)\{1 + m(t)\}$.
- 21. Explain the regenerative stochastic process and semi-Markov process
- 22. What is Inspection Paradox? Explain it in the context of a renewal process
- 23. Explain Arbitrage theorem
- 24. Derive the distribution of first hitting time of a Brownian motion process.

 $(8 \times 2 = 16 \text{ weightage})$

PART C (Answer any TWO Questions) Weightage 4

- 25. Show that periodicity is a class property.
- 26. Derive the limiting probabilities of a Birth-Death process.
- 27. State and prove elementary renewal theorem
- 28. Explain the transient behavior of M/M/1 model.

 $(2 \times 4 = 8 \text{ weightag})$

7

11	Æ	3	N	1	7	1	1	6
TIL	A	J	7.3		10		*	

(Pages: 2)

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Degree Examination, November 2017 ST3C12 - Testing of Statistical Hypotheses

(2016 Admission onwards)

Max. Time: 3 hours

Max. Weightage:36

PART-A

Answer all questions. Weightage 1 for each question.

- 1. Define power function and OC function.
- 2. Define one parameter exponential family. Show that it has MLR property.
- 3. Define UMP unbiased test.
- 4. If $x \ge 1$ is the critical region for testing H_0 : $\theta = 2$ against H_1 : $\theta = 1$, on the basis of the single observation taken from population with p.d.f $f(x,\theta) = \theta e^{-\theta x}$, x > 0. Obtain the values of power and significance level.
- 5. Distinguish between size of a test and level of significance.
- 6. Distinguish between randomized and non-randomized tests.
- 7. Explain the features of SPRT.
- 8. Define ASN function. Explain its uses
- 9. Define likelihood ratio test.
- 10. Distinguish between parametric and non-parametric test.
- 11. Define Bayesian test
- 12. Explain sign test.

(12x1=12 Weightage)

PART – B Answer any 8 questions. Weightage 2 for each question.

- 13. Let $X \sim N(\mu,4)$. To test H_0 : $\mu = -1$ against H_1 : $\mu = 1$ based on a sample of size 10 from this population, we use the critical region $X_1 + 2X_2 + 3X_3 + ... + 10X_{10} \ge 0$. What is its size? Find the power of the test.
- 14. What is likelihood ratio test? Obtain the same for testing the significance of mean in Normal distribution with unknown variance.
- 15. Define MLR property. Explain how MLR property can be used to find a UMP test
- 16. Describe Mann- Whitney-Wilcoxon test.
- 17. Explain Kolmogrov-Smirnov test.
- 18. Prove that SPRT terminates with probability 1.
- 19. Derive the approximate expression for ASN function in SPRT.
- 20. Given a random sample $x_1, x_2, ..., x_n$ from the distribution with p.d.f $f(x, \theta) = \theta e^{-\theta x}$, x > 0. Show that there exists no UMP test for testing H_0 : $\theta = \theta_0$ against H_1 : $\theta \neq \theta_0$.
- 21. Examine whether a best critical region exists for testing the null hypothesis H_0 : $\theta = \theta_0$ against the alternative hypothesis H_1 : $\theta > \theta_0$ for the parameter θ of the distribution $f(x,\theta) = \frac{1+\theta}{(x+\theta)^2}, \ 1 \le x < \infty.$
- 22. State and prove Karlin Rubin theorem.
- 23. If X follows $N(\mu,1)$ obtain UMPU test for H_0 : $\mu=\mu_0$ against H_1 : $\mu\neq\mu_0$
- 24. Explain Levene's test.

(8x2=16 Weightag

PART – C Answer any 2 questions. Weightage 4 for each question.

- 25. Define most powerful test. State and prove Neyman-Pearson fundamental lemma.
- 26. Obtain the likelihood ratio test for testing the equality of means of two normal populati with equal variances.
- 27. Derive the expression for OC function in SPRT. Obtain the OC function corresponding the SPRT for testing H_0 : $\mu = \mu_0$ against H_1 : $\mu = \mu_1$ ($\mu_1 > \mu_0$) based on observations fro $N(\mu, \sigma^2)$, where σ^2 is known.
- 28. (a) Define maximal invariant.
 - (b) Let T(X) be maximal invariant with respect to G. Show that the test ϕ is invariant under G if and only if ϕ is a function of T.

M3N1	71	17
VINI	/	

(Pages	2
1 Pages	
11 ands	54

Reg. No:	٠.
----------	----

ame.

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Degree Examination, November 2017

ST3E02 - Econometric Models

(2016 Admission onwards)

Max. Time: 3 hours

Max. Weightage:36

PART-A Answer all Questions Each question carries a weightage of 1.

- 1. Explain the demand, revenue and cost functions.
- 2. What is homogeneous production function?
- 3. What do you mean by forecasting?
- 4. What do you mean by lagged variables? What are their uses in econometric modelling?
- 5. Distinguish between white noise process and iid noise process.
- 6. Define MA(q) model.
- 7. Define stationary process. What is the stationary condition of an AR(1) model?
- 8. State the properties of auto-covariance function.
- 9. What is 95% confidence interval for β_1 in the regression model $Y = \beta_0 + \beta_1 X + u$?
- 10. What is the significance of β_1 in the regression model $Y = \beta_0 + \beta_1 X + u$?
- 11. In the regression model $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u$ how will test the significance of the restriction $\beta_1 = \beta_2$? State the assumptions under which the test is valid.
- 12. Explain the use of F test in assessing the efficacy of the fitted regression model.

 $(12 \times 1 = 12 \text{ Weightage})$

PART B

Answer eight Questions Each question carries a weightage of 2.

- 13. Explain elasticity of substitution.
- 14. Given the production function $Q = AK^{\alpha}L^{\beta}$, show that
 - i) $\alpha + \beta > 1$ implies increasing returns to scale.
 - ii) $\alpha + \beta < 1$ implies decreasing returs to scale.
- 15. How many factors of production are explicitly considered in the Domar model? What does this imply with regard to the capital-labour ratio in production?
- 16. Explain the Koyck's distributed lag model.
- 17. Show that the OLS estimate of $\hat{\beta}$ in $Y = X\beta + U$ is unbiased.
- 18. Distinguish between coefficient determination R^2 and adjusted R^2 .
- 19. Define stationarity of stochastic processes.
- 20. Explain the indirect least square method of estimation.
- 21. Write a short note on full information maximum likelihood.
- 22. Find the ACF for ARMA(1,1) model.
- 23. Explin the concept of stationarity.
- 24. What is the difference, if any, between tests of unit roots and tests of cointegration?

 $(8 \times 2 = 16 \text{ Weightage})$

PART-C

Answer two Questions

Each question carries a weightage of 4.

- 25. Describe the method of least squares for estimating parameters of a simple linear regression model. Establish the properties of the estimators starting the condition required.
- 26. Discuss the problem of hetroscedasticity. Explain the consequences of using least square estimates in such situations. What are the remedial measures?
- 27. What are the problems one encounters in the OLS estimation under adaptive expectations in the following models?
 - (a) Models of agricultural supply.
 - (b) Models of hyperinflation.
 - (c) Partial adjustment models.
 - (d) Error correction models.
- 28. Explain the meaning of each of the following terms.
 - (a) Endogenous variables.
 - (b) Exogenous variables.
 - (c) Structural equations.
 - (d) Reduced-form equations. .
 - (e) Recursive systems.

9

M3N17118

(Pages:2)

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Degree Examination, November 2017 ST3E09 - Life Time Data Analysis

(2016 Admission onwards)

Max. Time: 3 hours

Max. Weightage:36

Part A (Answer ALL the questions. Weightage 1 for each question)

- 1. Explain the objectives of lifetime data analysis and its present-day relevance.
- 2. If the hazard rate is given by h(t)=a+bt, t>0, obtain the expression for the survival function.
- 3. What is a mixture model? Give an example.
- 4. Define log-location scale family and give an example.
- 5. Explain the term 'censored observations'.
- 6. What is the use of P-P plot in model diagnostics?
- 7. What are the approaches to regression modeling for lifetimes? Explain.
- 8. Explain the concept of partial likelihood for inference on lifetime.
- 9. What is accelerated life model?
- 10. What is a proportional hazard (PH) model?
- 11. Distinguish between fully parametric and semi-parametric regression for failure rate.
- 12. Define the hazard rate in the bivariate set up.

(12x 1=12 weightage)

Part B (Answer any EIGHT questions. Weightage 2 for each question)

- 13. Present log-logistic distribution as a parametric model for continuous lifetime and highlight its important analytic characteristics.
- 14. Describe the basic reliability concepts with reference to discrete lifetime.
- 15. Writing the expression for the hazard function, describe its behavior for the two-parameter lognormal distribution.
- 16. Describe the different types of censoring used in lifetime data analysis.
- 17. Obtain the Greenwood formula for the variance of the KPML estimator.
- 18. What is a life table? Describe the standard life table methods.
- 19. Explain Nelson-Aalen estimate and obtain its asymptotic variance.
- 20. Employing the maximum likelihood method, obtain the estimate of the parameter θ of the life distribution with pdf, $f(t) = (1/\theta) \exp\{-t/\theta\}$, t > 0 ($\theta > 0$) under right censoring.
- 21. Explain the likelihood based inference procedures for Weibull distribution for censored observations.
- 22. Give the physical interpretation of PH model and identify a model which belongs to this category.
- 23. How do you apply rank test for censored observations? Explain.
- 24. Explain the linear rank test in accelerated life models.

 $(8 \times 2 = 16 \text{ weightag})$

Part C (Answer any TWO questions. Weightage 4 for each question)

- Describe the Weibull model in the context of survival analysis and discuss propertie of its hazard rate.
- 26. Explain the Kaplan Meier Product Limit (KPML) estimator and mention its important properties.
- 27. Obtain the maximum likelihood estimators for the mean of the exponential distribution under Type I and Type II censoring.
- 28. Derive the expression for the partial likelihood function and describe the test for significance of the regression coefficients in the Cox proportional hazard model, where is a single covariate.

 $(2 \times 4=8 \text{ weighta})$