(Pages:2)

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Degree Examination, November 2016 CH3C07 - Physical Chemistry II

(2015 Admission onwards)

ax. Time: 3 hours

Max. Weightage: 36

Section A

Answer all questions

Each question carries 1 weightage

Show that molecular partition function is the product of the partition function for the various degrees of freedom.

Rationalize third law of thermodynamics using statistical concept.

- Define rotational temperature. What is its significance?
- 'Electrons would never follow Maxwell Boltzmann Statistics'. Justify the statement.
- Explain the terms local equilibrium and steady state with reference to irreversible thermodynamics.
- Define Soret coefficient. Explain its significance.
- Distinguish between primary and secondary salt effect.
- . Explain why conventional methods are inadequate for studying fast reactions.
- Explain the term potential energy surfaces.
- 0. Distinguish between "activation controlled" and "diffusion controlled" reactions.
- 1. Explain the term isosteric heat of adsorption.
- 2. What is the principle of Auger spectroscopy?
- 13. Distinguish between specific and general acid catalysis.
- 14. Explain the effect of pH on enzyme catalysed reactions.

 $14 \times 1 = 14$ Weightage

Section B

Answer any Seven questions.

Each question carries 2 weightage.

- 15. Derive an equation for the rotational partition function.
- 16. Describe the Einstein's theory of heat capacity of atomic crystals.
- 17. Discuss briefly the "free volume theory" of liquids.
- 18. Derive an equation for the rate of entropy production in a system with heat transport only.
- 19. Explain briefly Rice Herzfeld mechanism of organic decomposition reactions.
- 20. Following absolute rate theory derive an expression for the rate constant of a bimolecular reaction.

- 21. Explain the principle of crossed molecular beams.
- 22. Using one of the models, discuss oscillating chemical reactions.
- 23. Discuss briefly any one experimental method for studying solid surfaces.
- 24. Compare the Langmuir-Hinshelwood and Eley-Rideal mechanism using the reaction 2CO + O₂ → 2CO₂

 $7 \times 2 = 14$ Weightage

Section C

Answer any Two questions.

Each question carries 4 weightage.

- 25. Formulate Bose Einstein distribution law. Explain the application of Bose Einstein condensation to liquid helium.
- 26. Define Electro kinetic phenomena. How would you rationalize electrokinetic properties using irreversible thermodynamics?
- 27. a) Give an account of the Lindemann theory of gaseous unimolecular reactions. Discuss the success and limitations of the theory.
 - b) Explain the general features of chain reactions. Derive an expression for the branching chain reactions and deduce the conditions for the explosion limits.
- 28. a) Derive BET adsorption isotherm.
 - b) For the adsorption of N_2 on a solid (one gram) at 75K, the BET isotherm has an intercept of 0.034 and a slope of 1.23 x 10^{-2} . The cross sectional area of N_2 is 0.16nm². Calculate the surface area of the solid?

 $2 \times 4 = 8$ Weightage

4 30	W-77	W. T4	14	142
10		N I	h	/1 /

(Pages:2)

Reg.	No:	• • •	٠	٠.		 		 		
3.T	5.									

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Degree Examination, November 2016 CH3C08 - Inorganic Chemistry II

(2015 Admission onwards)

Max. Time: 3 hours

Max. Weightage: 36

Part A

(Answer all questions. Each question carries 1 weightage)

- 1. Write the ground term symbols for Vanadium (III) and Cobalt (II).
- 2. Explain why hexaaquamanganese (II) ion is pale pink colour.
- 3. [FeF₆]³⁻ is colorless whereas [CoF₆]³⁻ is coloured. Explain.
- 4. How does antiferromagnetic property vary with temperature? Explain.
- 5. Calculate the spin only magnetic moment for (a) K₄[Mn(CN)₆] and (b) [Cr(H₂O)₆] SO₄
- 6. What is cis effect?
- 7. What are anation reactions?
- 8. What are metal complex sensitizers?
- 9. Write Fuoss-Eigen equation? Explain the terms.
- 10. Explain photoaquation reaction with an example.
- 11. How ESR spectroscopy can be used to distinguish between Cu (I) and Cu (II) in complexes? Explain.
- 12. How Zeise's salt prepared? Give its structure.
- 13. What are carbyne complexes? Give one example.
- 14. What are metalloenzymes? Give one example.

(14×1=14 weightage)

Part B

(Answer any seven questions. Each question carries 2 weightage)

- 15. Discuss the charge transfer transition. How is it differ from d-d transition?
- 16. Explain the principle of determination of magnetic susceptibility of a complex by Gouy method?.
- 17. Discuss the theories of trans effect.
- 18. Explain Taube mechanism of electron transfer reactions in complexes.

- 19. Discuss the special characteristics of vitamin B₁₂ which differentiate it from other
- 20. Write a note on photochemical reactions of chromium complexes.
- 21. Write a note on metal carbene complexes.
- 22. Discuss the role of Na, K and Ca in biological system.
- 23. State and explain 18-electron rule as applied to organometallic compound.
- 24. How IR spectroscopy can be used to identify terminal and bridging carbonyl groups in

(7×2=14 weightage)

Part C

(Answer any two questions. Each question carries 4 weightage)

- 25. Discuss the different mechanisms of substitution reactions in octahedral complexes.
- 26. How ferrocene is synthesized? Give its structure, bonding and properties.
- 27. Discuss the general structural features of Fe-S proteins and their role in biological
- 28. Discuss the principle involved in Mossbauer spectroscopy. How is it useful in the study of iron complexes?

(2×4=8 weightage)

- HILLIAM				
11	13	NI	61	43

(Pages:3)

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Degree Examination, November 2016 CH3E01 - Synthetic Organic Chemistry

(2015 Admission onwards)

Max. Time: 3 hours

Max. Weightage: 36

PART A

(Answer all questions. Each question carries 1 weightage)

1. How will you bring about the following conversion successfully using a suitable protecting group?

2. Give the products A and B of the following reaction

$$S + CO_2Et$$
 $A \xrightarrow{\triangle} A$
retro Diels Alder B

3. Predict the product of the following reaction:

- Show how nucleophilic and electrophilic nitrogen species are used in making C-N
 bonds.
- 5. How would you synthesize isoquinolines by Bischler-Napieralski synthesis?
- 6. Indicate the expected products of the following reaction:-

$$C_6H_5$$
 CH_3 m -CPBA C_2H_5 C_2

7. Predict the product of the following reaction:

8. Suggest the suitable reagent A and product B for the following reaction

$$H_3C \xrightarrow{\qquad \qquad } CH_3 \xrightarrow{\qquad \qquad } H_3C \xrightarrow{\qquad \qquad } CH_3 \xrightarrow{\qquad \qquad } CH_2I_2, (C_2H_5)_2Zn \xrightarrow{\qquad \qquad } B$$

9. Give the products A and B of the following reaction

$$\begin{array}{c|c} O & CI \\ \hline & (CH_3)_2Cd \\ \hline & A \\ \hline \end{array} \begin{array}{c} \text{(i) Me}_2CuLi \\ \text{(ii)}H_2O/H^{\oplus} \\ \hline \end{array} \begin{array}{c} B \\ \hline \end{array}$$

10. Suggest a suitable synthetic reagent for the following synthons:-

- 11. Give an application of 1,3-dipolar addition reaction for the synthesis of cyclic compound.
- 12. Write an example of organo iron (Fe) reagent and indicate its use.
- 13. Discuss the mechanism by which tri-n-butyl tin hydride (Bu₃SnH) bring about the following synthetic transformation.

14. Discuss any one method of synthesis of caffeine.

 $(14 \times 1 = 14 \text{ weightage})$

PART B

(Answer any seven questions. Each question carries 2 weightage)

15. Predict the product for the following reaction and suggest a suitable mechanism.

16. Predict the product in the following Birch-type reduction. How will you explain the formation of the product?

- 17. What is the mechanism and use of Skraup synthesis?
- 18. Write a brief note on chemoselectivity in metal hydride reductions.
- 19. Illustrate the use of SeO_2 and NBS in functionalisation of organic compounds.
- 20. How is benzene tricarbonyl chromium complex prepared? Discuss its important synthetic applications?

- 21. Describe the salient steps in the synthesis of cephalosporins.
- 22. Suggest a synthetic method each for guanine and thymine heterocycles.
- 23. Indicating the umpolung synthon and reagent, give the retrosynthetic analysis and the corresponding synthesis of the following compound:

24. Briefly explain the general strategy of protecting amino groups and carboxyl groups in organic synthesis?

 $(7 \times 2 = 14 \text{ weightage})$

PART C

(Answer any two questions. Each question carries 4 weightage)

25. Use retrosynthetic analysis to suggest synthesis of the following:

- 26. Outline the steps involved in the synthesis of Longifolene and discuss the key steps involved in it.
- 27. Organo-palladium compounds have recently found extensive usage. Justify by discussing their important C-C, C-O and C-N bond forming reactions.
- 28. Explain the general methods for the synthesis of the following heterocycles:-
 - (i) Oxazole
 - (ii) Furanones
 - (iii) Caffeine and
 - (iv) Pyrazine

 $(2 \times 4 = 8 \text{ weightage})$