17

1M3N16234

(Pages :2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Degree Examination, November 2016

ST3C11 - Stochastic Process

(2015 Admission onwards)

Max. Time: 3 hours

Max. Weightage:36

PART - A Answer all questions. Weightage 1 for each question

- 1. What is a stochastic process? Give an example of a stochastic process clearly specifying its index set and the state space.
- 2. Is it true that a strictly stationary process is always weakly stationary? Justify your answer.

3. Describe the gambler's ruin problem.

- 4. Define a Galton-Watson branching process. Is it Markovian?
- 5. When do you say that $\{X_t, t \ge 0\}$ is a Poisson process?
- 6. Justify the statement "a queueing process is an example of a Birth-Death process".
- 7. What do you mean by regenerative process?

8. State the key renewal theorem.

- 9. Explain the meaning of inspection paradox in the context of renewal process.
- 10. What do you mean by a queue discipline? Explain it using stanard notations.
- 11. State Chapman-Kolmogorov equations. Cite one of its uses.
- 12. What do you mean by pricing of stock options?

 $(12 \times 1 = 12 \text{ weightage})$

PART - B Answer any 8 questions Weightage 2 for each question

- 13. Define a random walk. Show that a one dimensional symmetric random walk is recurrent.
- 14. Let $\{X_n\}$ be a Markov chain on the state space $S = \{0, 1, 2, 3\}$ with TPM

$$P = \begin{pmatrix} 0 & 1/2 & 0 & 1/2 \\ 1/2 & 0 & 1/2 & 0 \\ 1/2 & 0 & 0 & 1/2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Assuming $P(X_0 = i) = \frac{1}{4}$, i = 0,1,2,3 compute (i) $P(X_1 = 0)$ and (ii) $P(X_0 = 0, X_2 = 0)$

Let $\{X_n, n = 0, 1, 2,\}$ with $X_0 = 1$ be a branching process with offspring distribution $\{p_j, j = 0, 1, 2\}$. Obtain the probability of extinction when $p_0 = p_1 = 1/4$, $p_2 = 1/2$.

- 16. Show that the sum of two independent Poisson processes is again a Poisson process.
- 17. Define Yule-Furry process $\{N(t); t \ge 0\}$ and obtain P(N(t) = n) for $n = 0, 1, 2, \dots$
- Define a stochastic process with independent increments. Show that a process $\{X(t); t \ge 0\}$ with independent increments is Markovian, if $\{X(0) = 0\}$.
- 19. Define a renewal function m(t) and show that m(t) = $\sum_{n=1}^{\infty} F_n(t)$, where $F_n(t)$ is the distribution function of the sum of n inter-arrival times.
- 20. Let R(t) be the total reward earned by time t in a renewal reward process with inter-arrival time $\{X_n\}$. Assuming the existence of the moments involved, show that $\frac{R(t)}{t} \to \frac{E(R)}{E(X)} as t \to \infty$
- 21. Define a semi-Markov process. Does it contain the ordinary Markov chain as a special case? Justify your answer.
- 22. Stating the required conditions obtain the steady state probabilities for an M/M/1 queue.
- 23. Define a Brownian motion. Obtain the mean, variance and covariance function of a Brownian motion.
- 24. What do you mean by reflected Brownian motion? Obtain the probability distribution of a Brownian motion reflected at the origin.

 $(8 \times 2 = 16 \text{ weightage})$

PART - C

Answer any two questions Weightage 4 for each question

- 25. Prove that P the state j of a Markov chain $\{X_n\}$ is recurrent if and only if $\sum_{n=0}^{\infty} p_{jj}^{(n)} = \infty \text{ where } p_{jj}^{(n)} = P(X_n = j | X_0 = i)$
- 26. State the postulates of birth and death process $\{N(t), t \ge 0\}$. Obtain the set of difference- differential equations for $p_n(t) = P(N(t) = n)$ and state the conditions under which the solutions exist.
- (a) Show that the renewal function satisfies the renewal equation
 (b) Obtain the limiting mean of the residual life in a renewal process as t→∞
- 28. Define a Brownian motion absorbed at a point x? Derive the probability distribution of a Brownian motion absorbed at a point x.

 $(2 \times 4 = 8 \text{ weightage})$

T A CO B I	/ 7 Z E
	0/77
M3N1	UMUU

(Pages :2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Degree Examination, November 2016

ST3C12 - Testing of Statistical Hypotheses

(2015 Admission onwards)

Max. Time: 3 hours

Max. Weightage:36

PART A

(Answer All questions. Weightage 1 for each question.)

- 1. What is p-value?
- 2. A sample of size 1 is taken from exponential distribution with unknown mean θ . To test, $H_0: \theta = 1$ against $H_1: \theta > 1$, the test is $\phi(x) = 1$, if x > 2 and $\phi(x) = 0$, if $x \le 2$. What is the size of the test?
- Define Uniformly Most Powerful (UMP) test.
- 4. Describe likelihood ratio test.
- 5. Define α -similar and UMP α -similar tests.
- 6. Describe how Baye's test differ from classical tests.
- 7. Distinguish between randomized tests and non-randomized tests.
- 8. How do you distinguish parametric and non-parametric tests.
- 9. What is Kendaull's τ ? Given a random sample how do you estimate it?
- 10. Describe chi-square test for homogeneity.
- 11. What is Sequential Probability Ratio Test (SPRT)? Explain.
- 12. Define Average Sample Number (ASN) function associated to SPRT.

 $(12 \times 1 = 12)$

PART B

(Answer any EIGHT questions. Weightage 2 for each question.)

- 13. State and prove Neyman Pearson fundamental lemma.
- 14. Let α be a real number, $0 < \alpha < 1$, and ϕ^* be a most powerful size α test of H_0 against H_1 . Let $\beta = E_{H_1}(\phi^*(X)) < 1$. Show that $1 \phi^*$ is a most powerful test for testing H_1 against H_0 at level 1β
- 15. Define unbiased test. Give an example to a UMP unbiased test. Justify your claim.
- 16. Let X_1, X_2, \ldots, X_n be a random sample of size n from $N(\mu, \sigma^2)$, where both μ and σ^2 are unknown. For testing $H_0: \mu = \mu_0, \ \sigma^2 > 0$ against $H_1: \mu \neq \mu_0, \ \sigma^2 > 0$ describe the UMP unbiased test.
- 17. Find the likelihood ratio test of a simple H₀ versus a simple H₁. Is this test equivalent to the one obtained from the Neyman-Pearson lemma? Justify your answer.
- 18. Let X_1, X_2, \ldots, X_n be a random sample of size n from an exponential distribution with pdf:

 $f(x:\theta) = \exp(-(x-\theta)), x \ge \theta, -\infty < \theta < \infty$

Derive the likelihood ratio test for H_0 : $\theta \le \theta_0$ versus H_1 : $\theta > \theta_0$ where θ_0 is a specified value θ

- 19. Illustrate Baye's test through a simple example.
- 20. Describe two-sample Kolmogorov-Smirnov test. Is it distribution free? Justify.
- 21. Illustrate Wilcoxon's signed-ranks test.
- 22. Describe chi-square test for independence.
- 23. Let X be a Bernoulli random variable with parameter θ , to test $H_0: \theta = \frac{1}{2}$ against $H_1: \theta = \frac{3}{4}$, construct an SPRT of size of your choice.
- 24. For the SPRT with stoping bounds A and B, A > B, and strength (α, β) , prove that $A \le \frac{1-\beta}{\alpha}$, and $B \ge \frac{\beta}{1-\alpha}$

PART C (Answer any TWO questions. Weightage 4 for each question.)

25. (a) Define the following terms:

i. Type I and Type II errors

ii. Power of a test

iii. Size of a test

iv. Most Powerful test

(b) Give an example to a two sided UMP test. Justify your answer.

26. (a) Define α -similar test and UMP α -similar test. Let the power function of every test ϕ of $H_0: \theta \in \Theta_0$ against $H_1: \theta \in \Theta_1$ be continuous in θ . Then prove that a UMP α -similar test is UMP unbiased, provided that its size is α for testing H_0 against H_1 .

(b) State generalized Neyman-Pearson lemma.

27. a)Define Kendal's tau and derive the test based on it.

(b) Describe the chi-square test for goodness of fit.

28. (a) State and prove Wald's inequality.

(b) Prove that SPRT terminates with probability one.

 $(2 \times 4 = 1)$

 $(8 \times 2 = 16)$

19

1M3N16236

(Pages :2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Degree Examination, November 2016 ST3E02 - Econometric Models

(2015 Admission onwards)

Max. Time: 3 hours

Max. Weightage:36

PART-A

Answer all Questions

Each question carries a weightage of 1.

- 1. Explain the demand, revenue and cost functions.
- 2. Define equilibrium of a market.
- 3. What is a homogenous production function?
- 4. Define Cobweb growth model.
- 5. State any four properties of ML Estimators of regression coefficients.
- 6. What do you mean by forecasting?
- 7. What is an instrumental variable?
- 8. What is simultaneous equation model?
- 9. Give the expression of ARMA(p, q) time series model.
- 10. Define MA(q) process.
- 11. Explain unit root test.
- 12. Define ARIMA (p, d, q) time series model.

 $(12 \times 1 = 12 \text{ Weightage})$

PART B

Answer eight Questions

Each question carries a weightage of 2.

- 13. What is meant by production function? Give an example.
- 14. Discuss Harold Domer Growth model.
- 15. Describe Leontiff's input output model
- 16. Describe the Almon's approach to distributed lag models.
- 17. Describe Cobweb model.
- 18. Obtain an unbiased estimator of the variance of the error term in the simple linear regression model.
- 19. Explain the Goldfield Quandt test.

- 20. Explain the idea of weighted least square.
- 21. Distinguish between reduced form and structural models.
- 22. Comment on the identifiability of the equations,

Demand, $D = a_0 + a_1 P + a_2 Y + V$,

Supply, $S = b_0 + b_1 P + W$,

where, P is the price of the commodity, Y is income of the consumer and V and W are random error.

- 23. Define MA(1) process. Derive its autocorrelation and state the condition of invertibility of the process.
- 24. Explain the basic steps in Box-Jenkins iterative three stage modelling and model identification in time series analysis.

 $(8 \times 2 = 16 \text{ Weightage})$

PART-C

Answer two Questions

Each question carries a weightage of 4.

- 25. Explain homogeneous production function. Examine the linear homogeneity of Cobb-Douglus production function. Show that for a linearly homogeneous Cobb-Douglus production function, α and β are the output elasticities of capital and labour.
- 26. Describe the method of least squares for estimating parameters of a simple linear regression model. Show that the estimators are BLUE's, under certain conditions to be stated.
- 27. Explain the problem of autocorrelation? How do you detect its presence? What are the consequences of autocorrelation?
- 28. Explain the concept of identification problem. How do you examine identifiability of an equation?

 $(2 \times 4 = 8 \text{ Weightage})$

1M3N16237

(Pages :2)

Reg.	No:												*	
Nam	e.				12	è		35		٠				

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Degree Examination, November 2016 ST3E09 - Life Time Data Analysis

(2015 Admission onwards)

Max. Time: 3 hours

Max. Weightage:36

Part A

Answer all questions. Weightage 1 for each question

- 1. Define hazard rate. State its properties.
- 2. Show that for Pareto distribution, the mean residual life function is linear and increasing.
- 3. Distinguish between type I and type II censoring schemes.
- 4. Explain bathtub hazard rate models
- 5. Define actuarial estimator of survival function. State its properties.
- 6. Obtain 95% confidence interval for the mean of exponential distribution under type II censoring.
- 7. What do you mean by parametric regression models. Give an example.
- 8. Explain Peto's method for estimation of survival function in the presence of tied lifetimes.
- 9. Write down likelihood under random censoring.
- 10. Define proportional hazards model. Why it is referred so?
- 11. Describe the method of hazard plots for model checking.
- 12. What do you mean by accelerated failure time model? Show that Weibull distribution belongs to this class.

(12x1=12)

Part B

Answer any 8 questions. Weightage 2 for each question

- 13. Discuss the behaviour of hazard rate for log normal distribution
- 14. Derive non-parametric estimator for distribution function for right truncated data.
- Obtain maximum likelihood estimator of reliability function of exponential distribution under type I censoring
- 16. Explain a method for comparing means of two exponential distributions under type I censoring.

- 17. Find the estimator for the data given below.
 1, 2, 2, 3, 6, 6, 10, 11, 12, 13, 13, 14, 15, 15+, 16, 17, 18+, 20+, 21, 23, 24, 25+, 26, 29, 29+, 31, 33, 34+. 35+ (+ denotes censored values)
- 18. Explain influence analysis of parametric regression models.
- Describe generalised Mantel- Hansel test for two sample problem.
- 20. What do you mean by partial likelihood? How it is used to estimate regression parameter?
- 21. Derive Breslow estimator for cumulative hazard function. State its properties.
- 22. Explain the method using martingale residuals for model checking.
- How do you compare two survival functions for grouped data.
- Explain discrete time hazard based models.

 $(8 \times 2 = 16)$

Part C

Answer any 2 questions. Weightage 4 for each question

- 25. Define Nelson Aalen estimator of cumulative hazard function. Show that it is uniformly strong consistent.
- 26. Derive the estimator of survival function using life table procedure. Derive Greenwoods formula.
- 27. Define Weibull regression model. Derive inference procedure for estimating parameters of the model
- 28. Define Cox proportional hazards model. Derive Cox likelihood as a marginal likelihood.

 $(2 \times 4 = 8)$