60

2M	1	01	n	0
TIAT	.1	フュ	U	7

(Pages: 2)

Reg. No:.....

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester M.Sc Statistics Degree Examination, March /April 2019 MSTA2B06 -Theory of Estimation

(2018 Admission onwards)

ne: 3 hours

Max. Weightage: 36

Part A (Answer ALL questions. Weightage 1 for each questions.)

Show that Poisson family $P(\lambda)$, $\lambda > 0$ belongs to one parameter exponential family.

Define sufficient statistic.

Find a sufficient statistic for σ^2 in N(0, σ^2) based on a sample of size n.

Give an example of a consistent estimator which is not sufficient.

If there exist two unbiased estimators for θ , show that there exits infinitely many unbiased estimators for θ .

Explain uniformly minimum variance unbiased estimator.

What do you mean by one parameter Cramer family?

If (0,1) is sample of size 2 from Bernoulli (θ) where $\theta = 0.1$ or 0.6, find the MLE of θ .

State Cramer-Huzurbazer theorem.

- Define shortest expected length confidence interval.
- 1. Define Bayesian credible interval for a parameter.
- 2. Give a pivotal quantity for the parameter μ in N(μ , 1).

 $(12 \times 1 = 12 \text{ weithtage})$

Part B Answer any EIGHT questions. Weightage 2 for each question.

- 3. State factorization theorem for sufficiency. Prove it in the discrete case.
- 14. Let $X_1, X_2, ..., X_n$ be random sample from exponential distribution with mean $\frac{1}{\theta}$. Show $T = \sum X_i$ is complete sufficient for θ .
- 15. Show that $(\sum X_i, \sum X_i^2)$ is jointly sufficient for (μ, σ^2) in $N(\mu, \sigma^2)$
- 16. Obtain UMVUE of p in Binomial(n,p) based on random sample of size n.
- 17. If T is a consistent estimator for θ_1 , show that e^T is a consistent for e^{θ} .

me

De

If

 F_{3}

 F_{λ}

W

De

Sh

Di

 $D\epsilon$

ist

(j

St

Fi

φ(:

W

Sta

Dε

- 3. Find the UMVUE of μ^2 based on random sample of size n from N(μ , 1)?
- Find the maximum likelihood estimator for θ based on a random sample of size n from $f(x;\theta) = \frac{1}{\theta}, \ \theta < x < 2\theta, \ \theta > 0$
- 1). Let $X_1, X_2, ..., X_n$ be random sample from $N(\mu, 1)$, where θ is an integer. Obtain maximum likelihood estimate of μ ?
- 1. Find moment estimators of m and p of Gamma(m, p)?
- 2. Derive a $100(1 \alpha)\%$ confidence interval for θ in $f(x; \theta) = \theta x^{\theta-1}, \ 0 < x < 1, \theta > 0.$
- 3. If the Prior distribution of θ in $Binomial(m, \theta)$ is Beta(3,2), obtain Bayes estimate of θ under squared error loss.
- 4. State Bayes' theorem and explain how it is used as a tool for estimation of parameters.

 $(8 \times 2 = 16 \text{ weightage})$

Part C

(Answer any TWO questions. Weightage 4 for each question.)

- 5. (a) State and prove Basu's theorem.
 - (b) Obtain UMVUE of $1 e^{-\theta}$ based on a random sample of size n from *Poisson* (θ).
- 6. (a) State and prove Rao-Blackwell theorem.
 - (b) Obtain UMVUE of $2\mu + \sigma^2$ in $N(\mu, \sigma^2)$
- 7. (a) Show that the maximum likelihood estimator is consistent and asymptotically normaly distributed under some regularity conditions.
 - (b) Explain the percentile method of estimation to construct CAN estimator and illustrate it in the case of Pareto distribution with pdf

$$f(x;\alpha,\beta) = \beta(x-\alpha)^{-(\beta+1)}, x > \alpha, \beta > 0, \alpha \in \mathbb{R}$$

- 8. (a) Explain the construction of large sample confidence interval and illustrate it to obtain confidence interval for success probability of a binomial population.
 - (b) Explain the construction of confidence interval for ratio of population variances based on samples from independent normal populations $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$.

 $(2 \times 4 = 8 \text{ weightage})$

(Pages: 3)

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester M.Sc Statistics Degree Examination, March /April 2019
MSTA2B07- Probability Theory

(2018 Admission onwards)

3 hours

Max. Weightage: 36

Part A

(Answer all questions. Each question carries 1 weightage.)

ine distribution function. Prove that it is non-decreasing.

and Y are two independent random variables with joint distribution function

Y(x,y) and marginal distribution functions $F_X(x)$, $F_Y(y)$. Prove that

$$Y(x,y) = F_X(x)F_Y(y), \ \forall x,y \in \mathcal{R}.$$

at is probability space induced by a random variable X?

ine convergence in r^{th} mean. Give an example to quadratic mean convergence.

w that r^{th} mean convergence implies convergence in probability.

cuss strong law of large numbers.

ine characteristic function. Check whether the following functions are character-

functions:

$$g_1(t) = \sin t, \ t \in \mathcal{R}$$

$$g_2(t) = \cos t, \ t \in \mathcal{R}$$

te Helly-Bray theorem.

d the distribution function of a random variable whose characteristic function is

$$=\cos 2t, t \in \mathcal{R}$$

at is a martingale? Give an example.

e Lindeberg-Feller form of CLT.

ine stopping time.

Part B

(Answer any eight questions. Each question carries 2 weightage.)

- 13) Prove that a distribution function can have atmost a countable number of discontinuities.
- 14) Define tails sigma field and tail events. State and prove Kolmogrov's 0-1 law.
- 15) Define independence of events. State and prove Borel 0-1 law.
- 16) Define convergence in probability and convergence in distribution. Bring out the mutual implication of these modes of convergence.
- 17) Let $X_1, X_2, ..., X_n$ be a sequence of independent random variables such that $X_i \sim U(0, \theta), \ \forall \ i = 1, 2, ..., n$. Define $Z_n = max(X_1, X_2, ..., X_n)$. Justifying the results you use, prove that $Z_n \to^{a.s} \theta$.
- 18) Let $\{X_n\}$ be a sequences of independent and identically distributed random variables with $E(X_i) = \mu$, prove that $\frac{S_n}{n} \to^p \mu$.
- 19) If $\phi(t)$ is a characteristic function, prove that $\phi(t)$ is uniformly continuous.
- 20) Find the distribution function of a random variable whose characteristic function is $\phi(t)=e^{-|t|}, t\in\mathcal{R}$
- 21) State Liapunov's form of CLT. Deduce Lindeberg-Levy CLT from Liapunov's CLT.
- 22) Let $\Omega = (0, 1)$, \mathcal{B} , the Borel σ -field of subsets of Ω and P, the Lebesgue measure on \mathcal{B} . Let \mathcal{D} be the sigma field generated by the class $\{(0, \frac{1}{3}], (\frac{1}{3}, \frac{2}{3}], (\frac{2}{3}, 1)\}$. Define X on Ω by $X(\omega) = \omega^2$. Find $E(X|\mathcal{D})$.
- 23) Define conditional expectation. What are its properties?
- 24) Define submartingale. If $\{Z_n, n \geq 1\}$ is a non-negative submartingale, prove that $P(\max(Z_1, Z_2, \dots, Z_n) > a) \leq E(Z_n|a)$ for a > 0.

Part C

(Answer any two questions. Each question carries 4 weightage.)

5) State Jordan-decomposition theorem. Identify the following distribution as discrete, continuous or mixture. If it is a mixture decompose it.

$$F(x) = \begin{cases} 0, & x < 0; \\ (1-p) + p(1-e^{-\lambda x}), & 0 \le x \le T; \\ 1, & x > T. \end{cases}$$

- 26) Let $\{X_n\}$ and $\{Y_n\}$ be sequences of a random variables on a probability space (Ω, \mathcal{A}, P) such that $X_n \to^L X$ and $Y_n \to^L c$, where c is a constant. Prove that
 - (i) $X_n + Y_n \to^L X + c$
 - (ii) $X_n Y_n \to^L cX$
 - (iii) $\frac{X_n}{Y_n} \to^L \frac{X}{c}$ where $c \neq 0$.
- 27) State and prove uniqueness theorem on characteristic functions.
- 28) State and prove martingale convergence theorem.

1	MA	1	T	10	14	11
1	LYS	84	71	125	,	11

~	-
Partec	7)
(Pages	4)

Reg.	No:	 	
XT			

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester M.Sc Statistics Degree Examination, March /April 2019 MSTA2B08- Regression Methods

(2018 Admission onwards)

Time: 3 hours

Max. Weightage: 30

PART A

Answer all questions each carry one weight

- 1. What you mean by estimability? Explain with an example.
- 2. Explain Gauss Markov Linear Model.
- 3. What you mean by design matrix?
- 4. Distinguish between error and residuals.
- 5. What are outliers? Explain with examples.
- 6. What you mean by serial correlation?
- 7. Define orthogonal polynomial. How it is useful in multiple regression model?
- 8. Define Mallow's Cp statistics.
- 9. Distinguish between Parametric and Non-parametric regression.
- 10. Explain Poisson regression model.
- 11. What is GLM?
- 12. Define model deviance.

PART B

Answer any eight. Each carries two weights.

- 13. State and Prove Gauss- Markov theorem.
- 14. Describe analysis of variance in simple linear regression model.
- 15. Develop confidence interval for the parameter σ^2 for a simple linear regression model.
- 16. Obtain the least square estimates of the slope and intercept of the simple linear regression model.
- 17. Describe residual analysis in GLM.
- 18. Given that Y_1, Y_2, Y_3 are random variables with means $\beta_1 + \beta_2$, $\beta_1 + \beta_3$, and $\beta_3 + \beta_2$ and a common variance then show that $l_1\beta_1 + l_2\beta_2 + l_3\beta_3$ is estimable if $l_1 = l_2 + l_3$.
- 19. Explain the weighted least squares.
- 20. Explain piecewise polynomial fitting.
- 21. Define non-parametric regression estimator and verify whether it is unbiased.
- 22. In the linear regression model, propose an unbiased estimator of error variance σ^2 . Prove your claim.
- 23. Explain logistic regression model.
- 24. Explain different estimation methods of GLM.