1	M2	M	12	00	12	0

(Pages: 3)

Reg. No:.....

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester M.Sc Degree Examination, March/April 2020 MCH2C07 – Reaction Mechanisms in Organic chemistry

(2019 Admission onwards)

Time: 3 hours

Max. Weightage:30

Section A Short Answer Answer 8 Questions out of 12. Each question carries a weightage of 1

- 1. Using S_N² reactions how will you convert 1-chlorobutane into
 - a) 1-Hexyne
- b) Pentane nitrile
- 2. Discuss E1cB mechanism.
- 3. Predict the product of the following reactions

4. Identify the product and explain the reason of formation.

$$\begin{array}{c}
O \\
\hline
(1) (H_2C=CH)_2CuLi \\
\hline
(2) H_3O^+
\end{array}$$

- 5. What are the possible products that would be formed by the reaction of 3,3-dimethyl-2-butanol and phosphoric acid at 80 °C.
- 6. Discuss A_{AC}1 mechanism of ester hydrolysis by citing an example.
- 7. Identify the product A and B in the following reaction.

- 8. Illustrate that the antarafacial thermal [1,3] migrations are allowed by Woodward-Hoffmann rule. However, such rearrangements are rare. Account for the observation.
- 9. Complete the given reaction and predict the mechanism

- 10. Write a short note on Jablonsky diagram.
- 11. What are the possible products that would form on irradiation of cycloprop ketone with light?
- 12. Write a brief account on Emde degradation.

 $(8 \times 1 = 8 \text{weightage})$

Section B Short Essay Answer 4 Questions out of 7. Each question carries a weightage of 3

- 13. Predict Structural and solvent effect on reactivity in S_N1 and S_N2 reactions.
- 14. Write a brief note on Extrusion reactions.
- 15. Describe the formation of singlet and triplet carbene intermediate. How do the differ in structure and reactivity?
- 16. Identify the product A and B and write the mechanism of the reaction.

17. Draw the product formed from each pair of reactants in a thermal [4+2 cycloaddition reaction. Predict the stereochemistry.

a. +
$$CH_2=CH_2$$
 b. + CN

- 18. Derive the selection rules for [4n] and [4n+2] electrons by FMO method in thermal and photochemical electrocylisation.
- Discuss the isolation methods and classification of alkaloids (based on ring structure).

 $(4 \times 3 = 12 \text{ weightage})$

Section B Essay Answer 2 Questions out of 4. Each question carries a weightage of 5

- 20. (a) Discuss the mechanism and stereochemical aspects of $S_{\rm E}1$ and $S_{\rm E}2$ reactions.
 - (b) Write the mechanism of S_NAr reaction
 - (c) Write the synthetic steps involved in the preparation of *m*-bromonitrobenzene and *p*-bromonitrobenzene starting from Benzene.

(2+2+1)

- 21. (a) How would you employ reformatsky reaction to prepare suggest the mechanism of reaction,
 - (b) Using Mannich reaction as guide, propose the mechanism of this reaction

- (c) Explain the mechanism of
- (i) Stobbe condensation (ii) Knoevenagel reaction, (iii) Claisen condensation.

(1+1+3)

- 22. Write the example and mechanism of the following reactions:

 - (a) Photo Fries rearrangement (b) di- π methane rearrangement,
 - (c) Barton reaction.
- (d) Hoffmann-Loeffler-Freytag reaction and
- (e) Paterno buchi reaction.

(1+1+1+1+1)

- 23. (a) Write the salient steps in conversion of cholesterol to testosterone.
 - (b)Discuss in brief
 - (i) Anthocynine and (ii) Flavonoids

(3+2)

 $(2 \times 5 = 10 \text{ weightage})$

21

	40000		-	~	0	-
4 7	VI2	10 W	17	ш	п	
	V 1 4	7814,30	1	v	u	det .

(Pages: 2)

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester M.Sc Degree Examination, March/April 2020 MCH2C08 – Electrochemistry, Solid State Chemistry & Statistical TD (2019 Admission onwards)

Time: 3 hours

Max. Weightage:30

Section A Short Answer Answer 8 Questions out of 12. Each question carries a weightage of 1

- 1. Define Half cell potential.
- 2. Write down the advantages of dropping mercury electrode.
- 3. Write down the Butler-Volmer equation and define the terms.
- 4. Define decomposition potential.
- 5. Differentiate point symmetry and space symmetry with appropriate example.
- 6. How cooper pair formation causes super conductivity.
- 7. What is meant by exciton and its role in photoconductivity.
- 8. Define Brillouin zone.
- What is meant by ensemble and how grand canonical ensemble is different from micro canonical ensemble.
- 10. Write down the equation for translational partition function and define the terms.
- 11. Write down the temperature independent equation for entropy and discuss its significance.
- 12. What is meant by Bose-Einstein condensation?

 $(8 \times 1 = 8 \text{ weightage})$

Section B Short Essay Answer 4 Questions out of 7. Each question carries a weightage of 3

- 13. Discuss briefly about the efficiency of electrochemical cell and heat engine.
- 14. Derive Tafel equation. Discuss the significance of Tafel plot.
- 15. Discuss briefly about overvoltage and its significance.
- (a) What is the advantage of miller indices over direct lattice parameter? (b) Find'd" of unit cell having direct lattices of(i) a/3, b/2,c, (ii) ∞a, b, c/2.
- 17. Comment on Meisner effect and how it changes with temperature.
- 18. What is meant by Hall effect? how it can be used to measure the mobility of electron / hole.
- 19. Bosons and fermions obeys Maxwell Boltzmann distribution at dilute conditions, how?

Section C Essay Answer 2 Questions out of 4. Each question carries a weightage of 5

- 20. Discuss the working principle, advantages and limitations of (a) Methanol Fuel cell(b) Ni-Cd cell.
- 21. Comment on the following(a)plausibility of existence of fivefold symmetry in solids. (b) Screw axis(c) Applications of Braggs Law
- 22. Derive Vibrational partition function, Rotational partition function and its temperature effects.
- 23. Explain Einstein theory of heat capacity of solids, failure and Debye modifications.

 (2 \times 5 = 10 weightage)

22

- 18	10	18	17	nn	10
11	14	TA	14	UU	17

(Pages: 2)

Reg. No:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester MSc Degree Examination, March/April 2020 MCH2C06 - Coordination Chemistry

(2019 Admission onwards)

Time: 3 hours

Max. Weightage:30

Section A Short Answer Answer 8 Questions out of 12. Each question carries a weightage of 1

- 1. Explain how Cu(I) and Fe(II) can be stabilised.
- 2. How Sidgwick's electronic theory explains the formation of [Cu(NH₃)₄]²⁺ and [Fe(CN)₆]²⁻?
- 3. Give any two limitations of Valence bond theory.
- 4. Explain the reason behind Electron cloud expansion in complexes.
- 5. How magnetic susceptibility of a paramagnetic substance is related with temperature?
- 6. Nickel forms a complex with Schiff base (formed by the condensation between Salicylaldehyde and ethylene diamine). How infrared spectroscopy helps in explaining the formation of Ni Schiff base complex.
- 7. Explain the Effect of complex formation on the symmetry of the ligand.
- 8. With the help of NMR spectroscopy, explain the structure of a diamagnetic complex.
- 9. What are labile and inert complexes?
- 10. Give any two evidences for dissociative mechanism in ligand substitution reactions in complexes.
- 11. Write down the Eigen-Fuoss equation and explain the terms.
- 12. What are metal complex sensitizers?

 $(8 \times 1 = 8 \text{ weightage})$

Section B Short Essay Answer 4 Questions out of 7. Each question carries a weightage of 3

- 13. Discuss on Chelate effect and Macrocyclic effect with examples. Is porphyrin a chelating ligand or macrocyclic ligand or both?
- 14. Explain in detail the splitting of d-orbitals in octahedral and square planar complexes according to crystal field theory.
- 15. What is Jahn Teller effect? Explain the theories related with Jahn Teller effect.
- 16. Explain Temperature independent paramagnetism with examples.
- 17. What is ESR spectra? Explain its application in copper complexes.
- 18. Explain Mossbauer Spectroscopy with examples.
- 19. Explain Inner and outer sphere electron transfer mechanisms.

 $(4 \times 3 = 12 \text{ weightage})$

Section B Essay Answer 2 Questions out of 4. Each question carries a weightage of 5

- 20. What is stability constant of a complex? Discuss the thermodynamic aspects of stability constant. Explain how pH metric method and spectrophotometric method can be used to calculate the stability constant of a complex.
- 21. What are Orgel diagrams? Explain with example. What are the merits and demerits of Orgel diagram? Discuss the importance of Tanabe Sugano diagrams over Orgel diagram.
- 22. What is trans effect? Explain the theories and applications of trans effect. Starting from PtCl₄²⁻, explain how cis-platin can be synthesised.
- 23. Explain in detail the photochemical reaction of metal complexes.

 $(2 \times 5 = 10 \text{ weightage})$

23

		100	- 1	13 1	6
1		VA IS	7 (1	41 I	-75
1M	2	10.0	~ 0	11 1	

(Pages: 2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester M.Sc. Degree Examination, March/April 2020 MCH2C05 – Group Theory and Chemical Bonding

(2019 Admission onwards)

Time: 3 hours

Max. Weightage:30

Section A Short Answer Answer 8 Questions out of 12. Each question carries a weightage of 1

- 1. What is meant by block factorization of a matrix? Explain with an example
- 2. How reduction formula can be derived using great orthogonality theorem.
- 3. Explain the nomenclature of irreducible representations
- 4. What are the consequences of great orthogonality theorem?
- 5. Explain the term transition moment integral. How it helps to find the probability of spectral transitions
- 6. How atomic orbitals are classified intodifferent symmetry species?
- 7. How inverse transformation is important in group theory. Explain with an example
- 8. Why symmetry should be maintained during the formation ofbonding molecular orbitals from atomic orbitals?
- 9. Draw the MO diagram for CO and find its bond order
- 10. Electronic wave function of Hydrogen molecule should be antisymmetric. Why?
- 11. Obtain the molecular term symbol for (i) O₂, (iii) O₂⁺, (iii) O₂²⁻ and (iv) O₂⁻
- 12. Find whether the given molecules are are aromatic or not using Frost -Hückel circle mnemonic device.
 - (i) Cyclobutadiene
- (ii) cyclooctatetrene

(iii) benzene

(iv) cyclopentadienylanion

 $(8 \times 1 = 8 \text{ weightage})$

Section B Short Essay Answer 4 Questions out of 7. Each question carries a weightage of 3

- 13. Explain the methods direct product and direct sum of square matrices and how these methods help in group theory.
- 14. How irreducible representation can be obtained by block diagonalization? Explain with an example.
- 15. Construct character tables for C₂V and C₂h point groups

- 16. How group theory can be used to explain the mutual exclusion principle of CO₂
 - 17. Obtain the hybridized orbitals for BF3molecules using SALC

D_{3h}	E	$2C_3$	$3C_2$	σ_h	$2S_3$	$3\sigma_v$	HELAD H	A5 1 (0 a A)
A'i	1	1	1	1	1	1		$x^2 + y^2, z^2$
A_2^{\prime}	1	1.	-1	1	1	-1	R_z	
E'	2	-1	0	2	-1	0	(x, y)	(x^2-y^2,xy)
A_1''	1	1	1	-1	-1	-1		Park of the second
A_2''	1	1	-1	-1	-1	1	z	
E"	2	-1	0	-2	1	0	(R_x, R_y)	(xz, yz)

- 18. Construct MO diagram for H₂O (C₂V point group) and find the possible electronic transitions
- 19. Obtain the delocalization energy of allylic cation, allylic radical and allylic anion using HMO method

 $(4 \times 3 = 12 \text{ weightage})$

Section C Essay Answer 2 Questions out of 4. Each question carries a weightage of 5

- a. Explain briefly on (i) finite, (ii) infinite groups, (iii) Abelian and (iv) cyclic mathematical groups
 - b. How basic symmetry operations are represented by using matrices
- 21. Obtain the Raman and IR activities of normal vibrational modes of NH₃ and H₂O molecules

C 2 e	E	C_2	$\sigma_{r}(xz)$	$\sigma'_{v}(yz)$			Csr	Ε	2 <i>C</i> 3	30,	
A1 A2	1	1	1	1 -1	z R	x^2, y^2, z^2	1000		1		$x^2 + y^2, z^2$
B_1	1	1	1		x, R_x	xz	A: E			-1 0	$(x^2-y^2,xy)(xz,yz)$

- 22. Derive the solution for the Schrodinger equation for H₂ molecule using molecular orbital theory
- 23. Obtain the π molecular orbitals of 1,3-butadiene using Hückel Molecular Orbitals. Find the free valence of each carbon atoms and explain the reactivity of each carbon atoms towards addition reactions.

 $(2 \times 5 = 10 \text{ weightage})$