2M1N20074	(Pages: 2)	Reg. No:
		Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Mathematics Degree Examination, November 2020

MMT1C01- Algebra - I

(2020 Admission onwards)
Time: 3 hours

Max. Weightage: 30

Part A

(Answer all questions each question carries 1 weightage)

- 1. Define an isometry of the Euclidean plane R^2 . Give an example of an isometry.
- 2. Find the order of (8, 10) in the group $Z_{12} \times Z_{18}$.
- 3. Find all proper nontrivial subgroups of $Z_2 \times Z_2$.
- 4. A Sylow 3-subgroup of a group of order 12 has order
- 5. Find the reduced form and the inverse of the reduced form of a²a⁻³b³a⁴c⁴c²a⁻¹.
- 6. What is group presentation?
- 7. Determine whether the polynomial $4x^{10}$ $9x^3 + 24x 18$ is irreducible over Q.
- Let G = {e, a, b} be a cyclic group of order 3 with identity element e.
 Write the element (2e + 3a + 0b) + (4e + 2a + 3b) in the group algebra Z₅(G) in the form re + sa + tb for r, s, t ∈ Z₅.

 $(8 \times 1 = 8 \text{ weightage})$

Part B Answer any two from each unit (Each question carries 2 weightage)

UNIT I

- 9. Find all abelian groups, up to isomorphism of order 720.
- 10. Prove that factor group of a cyclic group is cyclic.
- 11. Let X be a G set. Prove that $G_x = \{g \in G / gx = x \}$ is a subgroup of G for each $x \in X$.

UNIT II

- 12. Let $\phi: Z_{18} \to Z_{12}$ be the homomorphism such that $\phi(1) = 10$
 - a. Find the kernel K of ф.
 - b. List the cosets in Z_{18}/K , showing the elements in each coset.
- 13. Give the isomorphic refinements of the two series:
 - $\{0\} < 10Z < Z \text{ and } \{0\} < 25Z < Z$
- 14. For a prime number p, Prove that every group G of order p² is abelian.

UNIT III

- 15. Consider the evaluation homomorphism $\phi_2: Z_7[x] \to Z_7[x]$. Compute $\phi_2[(x^3+2)(4x^2+3)(x^7+3x^2+1)]$.
- 16. Let G be a finite group of the multiplicative group (F*, .) . Prove that G is cyclic.
- 17. Show that an intersection of ideals of a ring R is again an ideal of R.

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any two (Each question carries 5 weightage)

- 18. a. If m is a square free integer, then prove that every abelian group of order m is cyclic.
 - b. Prove that M is a maximal normal subgroup of G if and only if G/M is simple.
- 19. a. State and Prove First Sylow Theorem.
 - b. Prove that every group of prime power order is solvable.
- 20. a. State and Prove Second Isomorphism Theorem.
 - b. State and Prove Eisenstein Criterion.
 - 21. Show that every non-constant polynomial f(x) ∈ F[x] can be factored into a product of irreducible polynomials in F[x] in unique way, where F is a field.

 $(2 \times 5 = 10 \text{ weightage})$

2M1N20075

(Pages:3)

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Mathematics Degree Examination, November 2020 MMT1C02-Linear Algebra

(2020 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part- A Answer all questions. Each question has one weightage.

- 1. Is the set $\{(1,0,-1),(2,-1,2),(3,-2,1)\}$ forms a basis for \Re^3 ?
- 2. Is the union of subspaces of a vector space, a subspace? Justify.
- 3. Describe explicitly a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ whose range is the subspace spanned by (1,0,-1) and (1,2,2).
- 4. Find linear operators T and U on R^2 such that TU = 0, but $UT \neq 0$.
- 5. What do you mean by the dual space of a vector space V? If V is finite dimensional, what you can say about the dimension of the dual space of V?
- 6. Define the transpose of a linear transformation.
- 7. Show that similar matrices have the same characteristic polynomial.
- 8. Show that an orthogonal set of non-zero vectors in an inner product space is linearly independent.

 $(8 \times 1 = 8 \text{ Weightage})$

Part- B Answer any two from each unit. Each question has two weightage Unit - I

- 9. If V is any n-dimensional vector space, then show that no subset of V that contains less than n vectors can span V.
- 10. Show that \Re over Q is not finite dimensional.
- 11. If $T: V \to V$ a linear operator, then prove that $Range(T) \cap Nullspace(T) = \{0\} \iff \text{If } T(T(\alpha)) = 0, \text{ then } T(\alpha) = 0$

Unit -II

- 12. If $B = {\alpha_1, \alpha_2, \alpha_3}$ is the basis for C^3 given by $\alpha_1 = (1,0,-1), \alpha_2 = (1,1,1), \alpha_3 = (2,2,0)$. Find the dual basis of B.
- 13. Let T be the linear operator on R^3 , the matrix of which in the standard ordered basis is

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ -1 & 3 & 4 \end{pmatrix}$$
. Find the basis for the range of T and a basis for the null space of T.

14. Let T be a linear operator on an n-dimensional vector space V. Show that the characteristic and minimal polynomials for T have the same roots except for multiplicities.

Unit - III

- 15. Define a projection of V and give one example. Prove that if R and N are subspaces of V such that $V = R \oplus N$, there is only one projection operator E on V which has range R and null space N.
- 16. Define inner product. Describe explicitly all inner products on \Re^1 and on C^1
- 17. Explain the Gram-Schmidt orthogonalization process.

 $(6 \times 2 = 12 \text{ Weightage})$

Part- C

Answer any two from the following four questions. Each question has Five weightage.

- 18. (a) Let W_1 and W_2 be the subspace of \Re^5 spanned by $\{(1,0,1,0,1), (1,1,1,0,0)\}$ and $\{(1,0,1,1,1), (1,0,1,0,0), (1,1,1,0,1)\}$ respectively. Find $W_1 \cap W_2$. Also find a basis for $W_1 \cap W_2$.
 - (b) Define a linear transformation. If V is an n-dimensional vector space and W be an m-dimensional vector space over the field F, show that L(V, W) is finite dimensional and has dimension mn.
- 19. (a) Let V be an n-dimensional vector space over F and let W be an m-dimensional vector space over F. Show that there is a one to one correspondence between the set of all linear transformations from V into W and the set of all $m \times n$ matrices over the field F.
 - (b) If V is a finite dimensional vector space, then show that V and its double dual V^{**} are isomorphic.

- 20. (a) Let T be a linear operator on the n-dimensional vector space V, and suppose that T has n distinct characteristic values. Prove that T is diagonalizable.
 - (b) Let V be a finite dimensional vector space over the field F and let T be a linear operator on V. Then, show that T is triangulable if and only if the minimal polynomial for T is a product of linear polynomials over F.
- 21. (a) For any $\alpha \in \mathbb{R}^2$, with standard inner product, show that $\alpha = (\alpha \mid e_1)e_1 + (\alpha \mid e_2)e_2$, where $\{e_1, e_2\}$ is the standard basis for \mathbb{R}^2 .
 - (b) Let W be a subspace of an inner product space V and let β be a vector in V. Show that a vector α in W is a best approximation to β by vectors in W if and only if $\beta \alpha$ is orthogonal to every vector in W.
 - (c) Define the orthogonal complement of any set S in an inner product space V. Show that it is always a subspace of V.

 $(2 \times 5 = 10 \text{ Weightage})$

(Pages: 2)

Reg.	No	:.														
Nam	e.									l	I		-			

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Mathematics Degree Examination, November 2020

MMT1C03 - Real Analysis - I

(2020 Admission onwards)

Time: 3 hours

Max. weightage: 30

Part A: Answer all questions (Each question carries 1 weightage)

- 1. Give an example of a set which is not perfect. Justify.
- 2. Is the set of all irrational real numbers countable? Justify.
- 3. Let E^0 denote the set of all interior points of a set E. Then prove that E is open if and only if $E^0 = E$.
- 4. Suppose f is a real function defined on \mathbb{R}^1 which satisfies $\lim_{h\to 0} [f(x+h)-f(x-h)]=0$. Does this imply that f is continuous? Justify.
- 5. Let f be defined for all real x, and suppose that $|f(x) f(y)| \le (x y)^2$ for all real x and y. Prove that f is constant.
- 6. Suppose α increases on $[a,b], a \leq x_0 \leq b, \alpha$ is continuous at $x_0, f(x_0) = 1$, and f(x) = 0 if $x \neq x_0$. Prove that $f \in \mathcal{R}(\alpha)$ and that $\int f d\alpha = 0$.
- 7. Suppose f is a bounded real function on [a,b] and $f^2 \in \mathcal{R}$ on [a,b]. Does it follow that $f \in \mathcal{R}$ on [a,b]? justify
- 8. Prove that every uniformly convergent sequence of bounded functions is uniformly bounded.

 $(8 \times 1 = 8)$

Part B- Answer any two from each unit (Each question carries 2 weightage) Unit I

- 9. Show that closed subsets of compact sets are compact.
- 10. Suppose f is a continuous mapping of a compact metric space X into a metric space Y. Then prove that f(X) is compact.
- 11. Let f be a monotonic on (a, b). Then prove that the set of points of (a, b) at which f is discontinuous is at most countable.

Unit II

12. Suppose f is continuous on [a,b], f'(x) exists at some point $x \in [a,b]$, g is defined on an interval I which contains the range of f, and g is differentiable at the point f(x). If h(t) = g(f(t)) ($a \le t \le b$) then show that h is differentiable at x and h'(x) = g'(f(x))f'(x).

- 13. Suppose f is continuous mapping of [a,b] into \mathbb{R}^k and f is differentiable in (a,b) Then prove that there exists $x \in (a,b)$ such that $|f(b)-f(a)| \leq (b-a)|f'(x)|$.
- 14. If f is monotonic on [a,b], and if α is continuous on [a,b] prove that $f \in \mathcal{R}(\alpha)$ on [a,b] Unit III
- 15. Show that a sequence $\{f_n\}$ converges to f with respect to the metric of $\mathcal{C}(X)$ if and only if $f_n \to f$ uniformly on X.
- 16. Even if $\{f_n\}$ is a uniformly bounded sequence of continuous functions on a compact set E, prove that there need not exist a subsequence which converges pointwise on E.
- 17. If K is a compact metric space, if $f_n \in \mathcal{C}(K)$ for $n = 1, 2, \cdots$ and if $\{f_n\}$ converges uniformly on K, then prove that $\{f_n\}$ is equicontinuous on K.

 $(6 \times 2 = 12)$

Part C - Answer any two (Each question carries 5 weightage)

- 18. (a) Show that every k-cell is compact.
 - (b) Prove that there exist real numbers which are not algebraic.
- 19. (a) Show that mean value theorem fails for complex valued functions.
 - (b) Suppose $f \in \mathcal{R}(\alpha)$ on $[a,b], m \leq f \leq M, \phi$ is continuous on [m,M], and $h(x) = \phi(f(x))$ on [a,b]. Then prove that $h \in \mathcal{R}(\alpha)$ on [a,b].
- 20. (a) Let $f \in \mathcal{R}$ on [a, b]. For $a \leq x \leq b$, put $F(x) = \int_a^x f(t)dt$. Then show that F is continuous on [a, b]. Furthermore, if f is continuous at a point x_0 of [a, b], then prove that F is differentiable at x_0 , and $F'(x_0) = f(x_0)$.
 - (b) Suppose F and G are differentiable functions on [a,b], $F'=f\in\mathcal{R}$, and $G'=g\in\mathcal{R}$. Then prove that $\int_a^b F(x)g(x)dx=F(b)G(b)-F(a)G(a)-\int_a^b f(x)G(x)dx$.
- 21. (a) Suppose $f_n \to f$ uniformly on a set E in a metric space. Let x be a limit point of E, and suppose that $\lim_{t\to x} f_n(t) = A_n$ $(n = 1, 2, \cdots)$. Then prove that $\{A_n\}$ converges and $\lim_{t\to x} f(t) = \lim_{n\to\infty} A_n$.
 - (b) Prove or disprove that every member of an equicontinuous family is uniformly continuous.

0

 $(2 \times 5 = 10)$

2M1	N2	007	17
21111	114	00/	1

(D	-
(Pages	-21
11 ages	41

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Mathematics Degree Examination, November 2020

MMT1C04- Discrete Mathematics

(2020 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part A (Short Answer Questions) (1-8) Answer all questions. Each question carries 1 weightage

- 1. Let (X, +, ., ') be a Boolean algebra. Prove that $x + x \cdot y = x$, for all $x, y \in X$.
- 2. State Stone representation theorem for finite Boolean algebra.
- 3. Prepare table values of the function $f(x_1,x_2,x_3) = x_1x_2 + x_2 \cdot x_3$.
- 4. Let G be a simple graph . Prove that $\sum_{v \in V(G)} d(v) = 2e(G)$.
- 5. Prove that a simple graph G with n vertices, $n \ge 2$, is complete if and only if $\kappa(G) = n 1$.
- 6. Prove that for any simple graph G, $\delta(G) \le 5$.
- 7. Find a grammar that generates the language $L = \{a^{nbn+1} : n \ge 0\}$ on $\Sigma = \{a, b\}$.
- 8. Find a dfa that accepts all strings on {0,1}, starting with prefix 01.

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer any two questions from each unit. Each question has 2 weightage.

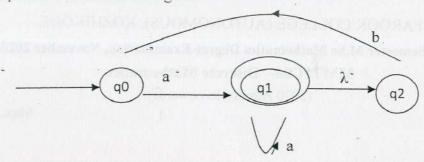
UNIT-I

- 9. Let $X = RU\{*\}$ where * is some point not on the real line. Define \le on X as $\{(x,y) \in R \times R : x \le y \text{ in the usual order } \} U\{(*,*)\}$. Prove that \le is a partial order on X.
- 10. Let (X,+,.,') be a finite Boolean algebra. Prove that every element of X can be uniquely expressed as sum of atoms.
- 11. Write the following Boolean function in the disjunctive normal form $F(x_1, x_2, x_3) = (x_1 + x_2 + x_3)(x_1' + x_2 + x_3')(x_1 + x_2' + x_3')(x_1' + x_2' + x_3')(x_1 + x_2 + x_3').$

UNIT 4 II

- 12. State and prove Whitneys theorem on 2-connected graphs.
- 13. Prove that graph G is planar if and only if, each of its blocks is planar.
- 14. Prove that an edge is a cut edge if and only if it belongs to no cycle.

15. Find a dfa equivalent to the following nfa



- 16. Are the grammars $G_1 = (\{S\}, \{a,b\}, S, \{S \rightarrow SS, S \rightarrow aSb, S \rightarrow \lambda, S \rightarrow bSa\})$ and $G_2 = (\{S\}, \{a,b\}, S, \{S \rightarrow SS, S \rightarrow SSS, S \rightarrow aSb, S \rightarrow bSa, S \rightarrow \lambda \}) \text{ are equivalent.}$
- 17. Find a regular expression for the language $L = \{w \in \{0,1\}^*: w \text{ has at least one pair of consecutive zeros}\}$.

 $(6 \times 2 = 12 \text{ weightage})$

Part C Answer any two from the following four questions (18-21) Each question carries 5 weightage.

- 18. (a)) Let (X, +, . ,') be a finite Boolean algebra, Prove that every element of X can be uniquely expressed as sum of atoms.
 - (b) Prove that the set of all symmetric Boolean functions of n Boolean variables $x_1, x_2, ..., x_n$ is a sub algebra of the Boolean algebra of all Boolean functions of these variables. Also prove it is isomorphic to the power set Boolean algebra of the set $\{0,1,...,n\}$.
- 19. (a) State and prove a necessary and sufficient condition for a graph to be bipartite
 - (b) Prove that every connected graph contains a spanning tree.
- 20. (a) Derive the Euler's formula for a connected plane graph.
 - (b) Prove that K_5 is nonplanar.
- 21. (a) Show that the language L={awa: $w \in \{a, b\}^*$ } is regular.
 - (b) Let L be the language accepted by a non deterministic finite accepter $M_N=(Q_N, \sum, \delta_N, q_0, F_N)$. Then prove that there exist a dfa $M_D=(Q_D, \sum, \delta_D, \{q_0\}, F_D)$ such that $L=L(M_D)$.

2M1N20078	(Pages: 2)	Reg. No:
		Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Mathematics Degree Examination, November 2020 MMT1C05- Number Theory

(2020 Admission onwards)

Time: 3 hours Max. Weightage: 30

Part A (Answer all questions. Each question carries 1 weightage.)

- 1. If f is a multiplicative function, then prove that f(1) = 1
- 2. Show that $\forall n \geq 1, \log n = \sum_{\substack{d \\ n}} \Lambda(d)$.
- 3. Prove that [2x] 2[x] is either 0 or 1.
- 4. For x > 0, prove that $\psi(x) = \sum_{m \le \log_2 x} \sum_{p \le x^{1/m}} \log p$.
- 5. Prove that for $x \ge 2$, $\pi(x) = \frac{\vartheta(x)}{\log x} + \int_2^x \frac{\vartheta(t)}{t \log^2 t} dt$.
- 6. Prove that $\sum_{r=1}^{p-1} (r|p) = 0$.
- 7. Show that if p is an odd positive integer then $(-1|p) = (-1)^{\frac{p-1}{2}}$.
- 8. In the 27- letter alphabet system (with blank = 26), use the affine enciphering transformation with key a = 13, b = 9 to encipher the message 'CANCEL LAST ORDER'.

 $(8 \times 1 = 8 \text{ weightage})$

Part B

(Answer any two questions from each unit. Each question carries 2 weightage.)

UNIT 1

- 9. Prove that $\forall n \geq 1$, $\sum_{d/n} \varphi(d) = n$
- 10. If both g and f * g are multiplicative functions, then prove that f is multiplicative.
- 11. Prove that $\forall x \ge 1$, $\left|\sum_{n \le x} \frac{\mu(n)}{n}\right| \le 1$

UNIT II

- 12. State and prove Abel's identity.
- 13. For $n \ge 1$, the n^{th} prime P_n satisfies the inequality

$$\frac{1}{6}n\log n < P_n < 12\left(n\log n + n.\log\frac{12}{e}\right).$$

14. Prove that $\sum_{p \le x} \frac{1}{p} = \log \log x + A + O\left(\frac{1}{\log x}\right), \forall x \ge 2.$

UNIT III

- 15. Prove that the Diophantine equation $y^2 = x^3 + k$ has no solution if k has the form $k = (4n 1)^3 4m^2$ where m and n are integers such that no prime $p \equiv -1 \pmod{4}$ divides m.
- 16. Solve the system of simultaneous congruence $2x + 3y \equiv 1 \pmod{26}$ $7x + 8y \equiv 2 \pmod{26}$
- 17. (a) Explain Hash function.
 - (b) How do we send a signature in RSA cryptosystem.

 $(6 \times 2 = 12 \text{ weightage})$

Part C (Answer any two questions. Each question carries 5 weightage.)

- 18. (a) State and prove Euler summation formula
 - (b) Prove that $\sum_{n \le x} \frac{\log n}{n} = \frac{1}{2} \log^2 x + A + O\left(\frac{\log x}{x}\right)$, where A is a constant.
- 19. Prove that $\lim_{x\to\infty} \frac{\pi(x)\log x}{x} = 1$ if and only if $\lim_{x\to\infty} \frac{\vartheta(x)}{x} = 1$
- 20. State and prove Shapiro's Tauberian theorem.
- 21. (a) State and Prove Gauss lemma.
 - (b) Let m be the number defined in Gauss lemma. Show that

$$m \equiv \sum_{t=1}^{\frac{p-1}{2}} \left[\frac{tn}{p} \right] + (n-1) \left(\frac{p^2 - 1}{8} \right) \pmod{2}$$

 $(2 \times 5 = 10 \text{ weightage})$