2M1N20103	(Pages : 2)	Reg. No:
		Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Statistics Degree Examination, November 2020 MST1C01 – Analytical Tools for Statistics – I

(2020 Admission onwards)

Time: 3 hours

Max. Weightage: 30

PART A Answer any four(2 weightages each)

- 1. State inverse function theorem.
- 2. Define Lagrange's Multipliers.
- 3. Find the real and imaginary part of the complex function: $w=z^2+3z$; where z=3+5i.
- 4. State Cauchy's residue theorem.
- 5. What is an analytic function? Is $f(z) = e^z$ is analytic? Justify
- 6. Define residues and poles. Give one example.
- 7. Obtain the inverse Laplace transform of $\frac{8}{s(s^2+4)}$.

(2 x 4=8 weightages)

PART B Answer anyfour(3 weightages each)

- Describe the sufficient conditions for interchange of integration and differentiation of multivariable functions.
- 9. Obtain the Jacobian of transformation of $f(x,y) = yx^3 + xy^3 x y + 5$. Check whether f is invertible or not.
- 10. Find the Laurent series expansion of $1/(z^2+z-3z)$ in 1<|Z|<2
- 11. State and prove Liouville's theorem.
- 12. Derive Cauchy's integral formula.
- 13. Find Laplace transformation $L(t\cos^3 2t)$
- 14. Obtain the fourier series of $\frac{1}{(1-x)^2}$

(3x 4=12 weightages)

PART C 'Answer any two(5 weightages each)

- 15. Suppose that D is a closed and bounded set in R^n . If $f:D\to R^m$ is continuous, then it is uniformly continuous in D. .
- 16. (a) Derive necessary and sufficient condition for a function to be analytic
 - (b) Check whether the complex function $f(z) = az^2$ is analytic and Harmonic or not.
- 17. (a) Distinguish between zero and singularity of a complex function.
 - (b) Distinguish between the terms residue at a pole and residue at infinity.
- 18. Find Laplace transforms of following functions
 - (a) t + Sin2t
 - (b) e^{-at}
 - (c) $te^t + tsinht$

(5x2=10 weightages)

2M1	N7	01	04
41111	114	UL	UT

(Pages: 2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Statistics Degree Examination, November 2020

MST1C02 - Analytical Tools for Statistics - II

(2020 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part A Short Answer Type questions (Answer any four questions. Weightage 2 for each question)

- 1. Define vector space and Subspaces.
- 2. Distinguish between basis and dimensions
- 3. Explain rank of product of matrix.
- 4. Define linear transformations.
- 5. Show that each eigen value of an idempotent matrix is either 0 or 1.
- 6. Define minimal polynomial and Characteristic polynomial of a matrix.
- 7. What are the rank and signature in a quadratic form.

 $(4 \times 2 = 8 \text{ weightage})$

Part B

Short Essay Type/ problem solving type questions (Answer any four questions. Weightage 3 for each question)

- 8. Define linear dependence and independence. Prove that two vectors are linearly dependent if and only if one is a scalar multiple of the other.
- 9. Show that $B = \{1+x, x+x^2, 1+x^2\}$ is a basis for the set of polynomials of degree less than or equal to two.
- 10. Show that the null space of T is a subspace of V.
- 11. Let T be a linear operator on R^2 defined by T(x,y) = (-y,x). Find the matrix of T in the ordered basis $\{(1,2),(1,-1)\}$.
- 12. State and prove Cayley-Hamilton theorem
- 13. Define eigen values, eigen vectors and eigen spaces
- 14. Show that Moore-Penrose inverse is unique.

 $(4 \times 3 = 12 \text{ weightage})$

Part C Long Essay Type questions (Answer any two questions. Weightage 5 for each question)

- 15. Let w_1 and w_2 are two subspaces of a vector space V over a field K Then Show that
 - a) $w_1 + w_2$ is also a vector space over V.
 - b) $w_1 \cap w_2$ is also a vector space over V.
 - c) $w_1 \cup w_2$ is also a vector space over V, if and only if $w_1 \subseteq w_2$ or $w_1 \supseteq w_2$.
 - d) $dim(w_1 + w_2) = dim(w_1) + dim(w_2) dim(w_1 \cap w_2)$.
- 16. a) Distinguish between Symmetric and Skew symmetric matrices
 - b) Let A be an $n \times m$ real matrix then show that, row rank (A) = column rank (A).
 - c) Define Orthogonal and Unitary matrices.
 - d) If A and B are two $n \times n$ square matrices, show that (A+B) = t(A) + tr(B).
- 17. Find the characteristic polynomial and minimal polynomial for $A = \begin{bmatrix} -1 & 0 & 0 \\ 4 & -1 & 0 \\ 0 & 0 & 7 \end{bmatrix}$
- 18. a) Write the necessary and sufficient condition for a non-homogeneous system of linear equation is said to be consistent.
 - b) Define a quadratic forms and write the classifications of quadratic forms
 - c) Find g-inverse for $A = \begin{bmatrix} 2 & 2 & 2 \\ 3 & 1 & 1 \\ 2 & 2 & 3 \end{bmatrix}$

 $(2 \times 5 = 10 \text{ weightage})$

2M1N20105	(Pages: 2)	Reg. No:
		Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Statistics Degree Examination, November 2020 MST1C03 – Distribution Theory

(2020 Admission onwards)

Time: 3 hours Max. Weightage: 30

Part A Short Answer Type questions (Answer any fourquestions. Weightage 2 for each question)

- 1. Define probability generating function. How will you obtain mean and variance from it?
- 2. Obtain the distribution of the mean of a random sample taken from $Gamma(\alpha,p)$.
- 3. Define Pareto distribution. What are its important properties?
- 4. Obtain the harmonic mean of type-2 beta distribution.
- 5. Derive the joint distribution of all the order statistics of a random sample of size n from a uniform distribution over (-1,1).
- 6. Obtain the pdf of sample range based on a random sample of size n from a population with pdf $f(x)=e^{-x}$, x>0 and 0 elsewhere.
- 7. If (X,Y) have a joint pdf given by f(x,y) = 4xy, 0 < x < 1, 0 < y < 1 then find P(X+Y < 1).

 $(4 \times 2 = 8 \text{ weightage})$

Part B

Short Essay Type/ problem solving type questions (Answer any four questions. Weightage 3 for each question)

- 8. Derive the pdf of a compound binomial distribution with a Poisson compounding density for the parameter n.
- 9. Define negative binomial distribution and give a practical situation where this distribution arises. Derive the expressions of its mean and variance.
- 10. Define multinomial distribution and obtain the correlation coefficient between its component random variables.

- 11. Obtain the density of the geometric mean of a random sample of size n taken from a lognormal distribution with parameters (μ, σ^2) .
- 12. Obtain the two population regression functions of bivariate normal distribution.
- 13. Derive the conditional distribution of $X_{(s)}$ given $X_{(r)}$, s > r, where $X_{(r)}$ and $X_{(s)}$ are the r-th and s-th order statistics of a random sample of size n taken from an exponential distribution with mean θ .
- 14. What is Pearson system of distributions? Obtain the distribution when the roots of the quadratic equation are real and of opposite signs.

 $(4 \times 3 = 12 \text{ weightage})$

Part C Long Essay Type questions (Answer any two questions. Weightage 5 for each question)

- 15. Obtain the probability generating function of Poisson random variable. Deduce the first four factorial moments using the p.g.f. and hence obtain the measures of skewness and kurtosis.
- 16. (a) If $P(X_n=x|N=n)=1/(n+1)$; $n=0,1,\ldots,n$ and N is a random variable following Poisson with parameter β . Obtain the unconditional distribution of X_n .
 - (b) If f(x,y)=(x+y)/4; |x|<1, |y|<1 and 0 elsewhere then show that X and Y are not independent but X^2 and Y^2 are independent.
- 17. (a) Obtain the pdf of sample midrange if a random sample of size n taken from a continuous population with pdf f(x) and CDF F(x).
 - (b) Show that min (X_1, X_2, \dots, X_n) follows geometric distribution if and only if X_i 's follow geometric distribution.
- 18. Define noncentralt-distribution and derive its density.
- 19. Derive the joint distribution of the sample mean and the variance of a random sample taken from a normal population with mean μ and variance σ^2 .

 $(2 \times 5 = 10 \text{ weightage})$

2M1N20106	(Pages :2)	Reg. No:
		Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Statistics Degree Examination, November 2020

MST1C04 - Probability Theory

(2020 Admission onwards)
Time: 3 hours

Part A
Short Answer Type questions
(Answer any four questions. Weightage 2 for each question)

- 1. If $A_n \to A$, then show that $A_n^c \to A^c$.
- 2. Show that every function X on Ω is measurable with respect to the power set of Ω .
- 3. If $A_n \to A$, then show that $P(A_n) \to P(A)$.
- 4. If X has the pdf $f(x) = e^{-x}$, x > 0 then find the pdf of log (X)
- 5. If $X \ge 0$ and is integrable, then show that X can be infinite at most on a set of probability measure zero.
- 6. Give an example to show that convergence in distribution doesn't imply convergence of moments.
- 7. State Lindeberg-Feller form of Central Limit Theorem.

 $(4 \times 2 = 8 \text{ weightage})$

Max. Weightage: 30

Part B

Short Essay Type/ problem solving type questions (Answer any four questions. Weightage 3 for each question)

8. Examine the convergence of the sequence of the following sets and if convergent derive the limit.

a)
$$A_{2n} = \left(0, \frac{1}{2n}\right), A_{2n+1} = \left(-1, \frac{1}{2n+1}\right);$$

b)
$$A_n = \{ \text{the set of rationals in } \left(1 - \frac{1}{n+1}, 1 + \frac{1}{n}\right).$$

- 9. Let (Ω, \mathcal{F}, P) be a probability space with $\Omega = (\omega_1, \omega_2, \omega_3, \omega_4)$, \mathcal{F} is the class of all subsets of Ω and $P(\{\omega_i\}) = \frac{1}{10}$, i = 1,2,3,4. The random variable X is defined as $X(\omega_i) = \begin{cases} 1 & \text{if } i = 1,2 \\ 0 & \text{if } i = 3,4 \end{cases}$. Determine the probability space induced by X.
- 10. Show that $\varphi(t) = \frac{1}{8} (1 + 7e^{it})$, $t \in R$ is a characteristic function, but $|\varphi(t)|$ is not.
- 11. State and prove Helly-Bray Lemma.
- 12. State and prove monotone convergence theorem.
- 13. State and prove Kolmogorov's three series theorem
- 14. Let $\{X_n\}$ be independent with $P(X_n = n\alpha) = \frac{1}{4} = P(X_n = -n\alpha), P(X_n = 0) = \frac{1}{2}$, where α is a constant. Prove that Lindberg condition holds for $\{X_n\}$.

 $(4 \times 3 = 12 \text{ weightage})$

Part C

Long Essay Type questions
(Answer any two questions. Weightage 5 for each question)

- 15. (a)Prove that sigma field is a monotone field. Verify whether the converse is true.
 - (b) Prove that $\overline{lim}(A_n \cup B_n) = \overline{lim}(A_n) \cup \overline{lim}(B_n)$.
- 16. (a) State and prove continuity theorem for characteristic functions.
 - (b) Find the distribution function of X if the characteristic function is given by

(i).
$$\varphi(u) = \frac{1}{4}(1 + e^{iu})^2$$
 and (ii). $\varphi(u) = (2 - e^{iu})^{-1}$.

- 17. (a) With the help of an example show that the convergence in distribution need not imply the convergence in probability.
 - (b) Prove that a sequence of random variables converges almost surely to a random variable if and only if the sequence converges mutually almost surely.
- 18. State and prove Kolmogorov inequality.

 $(2 \times 5 = 10 \text{ weightage})$