1M1N19078

(Pages: 2)

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Mathematics Degree Examination, November 2019 MMT1C05- Number Theory

(2019 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part A (Answer all questions. Each question carries 1 weightage.)

- 1. Find all integers n such that $\varphi(n) = \frac{n}{2}$.
- 2. If f and g are arithmetical functions, prove that (f * g)' = f' * g'.
- 3. Prove that $\sum_{n \le x} \Lambda(n) \left[\frac{x}{n} \right] = \log([x]!)$.
- 4. Prove that $\lim_{x\to\infty} \frac{\psi(x)}{x} = \lim_{x\to\infty} \frac{\vartheta(x)}{x}$.
- 5. Prove that for $x \ge 2$, $\vartheta(x) = \pi(x) \log x \int_2^x \frac{\pi(t)}{t} dt$.
- 6. Prove that Legendre symbol is a completely multiplicative function.
- 7. Find the plain text of the cipher text 'HTWWXPPE' in the shift cryptosystem with enciphering key b = 11 (26-letter alphabet system)
- 8. Find the inverse of the matrix $\begin{bmatrix} 3 & 11 \\ 15 & 22 \end{bmatrix}$ (mod 29)

 $(8 \times 1 = 8 \text{ weightage})$

Part B

(Answer any two questions from each unit. Each question carries 2 weightage.)

UNIT 1

- 9. Prove that $\forall n \ge 1$, $\varphi(n) = \sum_{d/n} \mu(d) \frac{n}{d}$
- 10. $\forall x \ge 2$, prove that $\sum_{2 \le n \le x} \frac{1}{n \log n} = \log(\log x) + B + O\left(\frac{1}{x \log x}\right)$, where B is a constant.
- 11. Prove that $\forall x \ge 2, \sum_{p \le x} \left[\frac{x}{p} \right] \log p = x \log x + O(x)$

UNIT II

- 12. For x > 0, prove that $0 \le \frac{\psi(x)}{x} \frac{\vartheta(x)}{x} \le \frac{(\log x)^2}{2\sqrt{x}\log 2}$.
- 13. Prove that $\lim_{x\to\infty} \frac{\pi(x)\log x}{x} = 1$ if and only if $\lim_{x\to\infty} \frac{\pi(x)\log \pi(x)}{x} = 1$.
- 14. Prove that $\lim_{x\to\infty} \left(\frac{M(x)}{x} \frac{H(x)}{x \log x} \right) = 0$.

UNIT III

- 15. Let p be an odd prime. Then prove that $\sum_{\substack{r=1\\(r|p)=1}}^{p-1} r = \frac{p(p-1)}{4}$ if $p \equiv 1 \pmod{4}$.
- 16. Determine the odd prime *p* for which 3 is a quadratic residue and those for which it is a non residue.
- 17. Explain (a) Frequency Analysis in cryptanalysis.
 - (b) Hash Function.

 $(6 \times 2 = 12 \text{ weightage})$

Part C (Answer any two questions. Each question carries 5 weightage.)

- 18. (a) Prove that for every $n \ge 1$, $\sum_{d/n} \lambda(d) = \begin{cases} 1 & \text{if } n \text{ is a square} \\ 0 & \text{otherwise} \end{cases}$ and $\lambda(n) = |\mu(n)|$.
 - (b) State and prove Legendre's identity.
- 19. State and prove Abel's identity from this deduce Euler summation formula.
- 20. (a) State and prove quadratic reciprocity law for Legendre symbol.
 - (b) Determine whether 888 is a quadratic residue or non residue modulo 1999.
- 21. (a) Explain the advantages and disadvantages of public key crypto system as compared to classical crypto system.
 - (b) Describe RSA cryptosystem.

 $(2 \times 5 = 10 \text{ weightage})$

25

1M1N19077

(Pages		2)
(I agus	*	4)

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Mathematics Degree Examination, November 2019

MMT1C04- Discrete Mathematics

(2019 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part A (Short Answer Questions) (1-8) Answer all questions. Each question carries 1 weightage

- 1. Define a lattice. Give an example.
- 2. Define disjunctive normal form and give an example of it.
- 3. Draw the Hasse diagram of divisors of 45. Is it a chain? Justify your answer.
- 4. If G be a graph with n vertices and m edges and δ and Δ are, respectively, the minimum and maximum of the degree of a graph G, then show that $\delta \leq \frac{2m}{n} \leq \Delta$.
- 5. Prove that e = xy of a graph G is a cut edge of a connected graph G if and only if, e does not belong to any cycle of G.
- 6. Prove that the Petersen graph is nonplanar.
- 7. Find a grammar that generates the language $L = \{a^n b^{2n} : n \ge 0\}$ on $\Sigma = \{a, b\}$.
- 8. Find a dfa that accepts all strings on {0, 1} except those containing the substring 001.

(8 x1 = 8 weightage)

Part B

Answer any two questions from each unit. Each question has 2 weightage.

UNIT-I

- 9. Let $X = RU\{*\}$ where * is some point not on the real line. Define \le on X as $\{(x, y) \in R \times R : x \le y \text{ in the usual order } \} \cup \{(*, *)\}$. Prove that \le is a partial order on X.
- 10. Write the following Boolean function in the disjunctive normal form $F(x_1, x_2, x_3) = (x_1+x_2+x_3)(x_1'+x_2+x_3')(x_1+x_2'+x_3')(x_1'+x_2'+x_3')(x_1'+x_2'+x_3')$.
- 11. Prove that an edge is a cut edge if and only if it belongs to no cycle.

UNIT - II

- 12. Prove that every connected graph contains a spanning tree.
- 13. State and prove Whitneys theorem on 2-connected graphs.
- 14. Derive the Euler's formula for a connected plane graph.

15. Find a dfa equivalent to the following nfa

- 16. Are the grammars G_1 = ({S}, {a,b}, S, { S \rightarrow SS, S \rightarrow aSb, S \rightarrow λ , S \rightarrow bSa}) and G_2 =({S}, {a, b}, S, { S \rightarrow SS, S \rightarrow SSS, S \rightarrow aSb, S \rightarrow bSa, S \rightarrow λ }) are equivalent.
- 17. Let $\Sigma = \{a, b, c\}$. Construct a deterministic finite accepter that accepts the language $a\Sigma^*b$. (6 x 2 = 12 weightage)

Part C

Answer any two from the following four questions (18-21) Each question carries 5 weightage.

- 18. (a) Let (X, +, ., ') be a finite Boolean algebra, Prove that every element of X can be uniquely expressed as sum of atoms.
 - (b) Prove that (X, \le) is a lattice where $(X, +, ., \cdot)$ is the Boolean algebra and \le is defined in X by $x \le y$ if and only if x.y' = 0. Find the maximum and minimum elements of this lattice.
- 19. Prove that the following statements are equivalent for a connected graph G
 - (a) G is Eulerian.
 - (b) The degree of each vertex of G is an even positive integer.
 - (c) G is an edge disjoint union cycles.
- 20. (a) Prove that a graph is bipartite if and only if it contains no odd cycles.
 - (b) Prove that for any loopless connected graph G, $\kappa(G) \le \lambda(G) \le \delta(G)$
- 21. (a) Show that the language L={awa: $w \in \{a,b\}^*$ } is regular.
 - (b) Let L be the language accepted by a non deterministic finite accepter $M_N = (Q_N, \sum, \delta_N, q_0, F_N). \quad \text{Then prove that there exist a dfa} \ M_D = (Q_D, \sum, \delta_D, \{q_0\}, F_D)$ such that L=L(M_D).

1M1N19076

(Pages: 2)

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Mathematics Degree Examination, November 2019

MMT1C03- Real Analysis - I

(2019 Admission onwards)

Time: 3 hours

t.

Max. Weightage: 30

Part A: Answer all questions (Each question carries 1 weightage)

- 1. Construct a bounded set of real numbers with exactly three limit points.
- 2. Let E^0 denote the set of all interior points of a set E. Prove that the complement of E^0 is the closure of the complement of E.
- 3. Give an example of an open cover of the segment (0, 1) which has no finite subcover.
- 4. Let f and g be continuous mapping of a metric space X into a metric space Y, and let E be a dense subset of X. Prove that f(E) is dense in f(X).
- 5. Suppose α increases on [a,b], $a \le x_0 \le b$, α is continuous at x_0 , $f(x_0) = 1$, and f(x) = 0 if $x \ne x_0$. Prove that $f \in \mathcal{R}(\alpha)$ and that $\int f d\alpha = 0$.
- 6. Define equicontinuous functions and give an example.
- 7. Prove that every uniformly convergent sequence of bounded functions is uniformly bounded.
- 8. If $\{f_n\}$ and $\{g_n\}$ converge uniformly on a set E, prove that $\{f_n+g_n\}$ converges uniformly on E.

 $(8 \times 1 = 8)$

Part B- Answer any two from each unit (Each question carries 2 weightage)
Unit I

- 9. Show that a set E is open if and only if its complement is closed.
- 0. Show that a mapping f of a metric space X into a metric space Y is continuous on X, if and only if $f^{-1}(V)$ is open in X for every open set V in Y.
- Suppose f is a continuous mapping of a metric space X into a metric space Y and if E is a connected subset of X, then prove that f(E) is connected.
 Unit II
- 2. Let f be defined on [a, b]; if f has a local maximum at a point $x \in (a, b)$, and it f'(x) exists, then show that f'(x) = 0.
- 3. Suppose f is continuous mapping of [a,b] into \mathbb{R}^k and f is differentiable in (a,b). Then prove that there exists $x \in (a,b)$ such that $|f(b)-f(a)| \leq (b-a)|f'(x)|$.

14. Suppose f is bounded on [a,b], f has only finitely many points of discontinuity on [a,b], and α is continuous at every point at which f is discontinuous . Then prove that $f \in \mathcal{R}(\alpha)$ on [a,b]

Unit III

- 15. If γ' is continuous on [a,b] then prove that γ is rectifiable and $\Lambda(\gamma) = \int_a^b |\gamma'(t)| dt$.
- 16. State and prove Cauchy criterion for uniform convergence.
- 17. If $\{f_n\}$ is a pointwise bounded sequence of complex functions on a countable set E, then prove that $\{f_n\}$ has a subsequence $\{f_{n_k}\}$ such that $\{f_{n_k}(x)\}$ converges for every $x \in E$.

 $(6 \times 2 = 12)$

Part C - Answer any two (Each question carries 5 weightge)

- 18. (a) If a set E in \mathbb{R}^k has one of the following three properties, then prove that it has the other two:
 - a) E is closed and bounded.
 - b) *E* is compact.
 - c) Every infinite subset of E has a limit point in E.
 - (b) Construct a compact set of real numbers whose limit points form a countable set.
- 19. (a) Show that $f(x) = \begin{cases} x \sin \frac{1}{x}, & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{cases}$ is not differentiable at 0.
 - (b) State and prove L'hospital's rule.
- 20. (a) If $f \in \mathcal{R}(\alpha)$ and $g \in \mathcal{R}(\alpha)$ on [a,b] then prove that $fg \in \mathcal{R}(\alpha)$, $|f| \in \mathcal{R}(\alpha)$ and $|\int_a^b f d\alpha| \leq \int_a^b |f| d\alpha$.
 - (b) State and prove the fundamental theorem of Calculus.
- 21. (a) Suppose $\{f_n\}$ is a sequence of functions, differentiable on [a,b] and such that $\{f_n(x_0)\}$ converges for some point x_0 on [a,b]. $If\{f'_n\}$ converges uniformly on [a,b] then show that $\{f_n\}$ converges uniformly on [a,b], to a function f, and $f'(x) = \lim_{n \to \infty} f'_n(x)$ ($a \le x \le b$).
 - (b) Give an example of a sequence of pointwise bounded functions on a set E which is not uniformly bounded.

 $(2 \times 5 = 10)$

27

1M1N19075

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Mathematics Degree Examination, November 2019

MMT1C02-Linear Algebra

(2019 Admission onwards)

Time: 3 hours

n

at

ry

2)

ne

et.

ıd

at

ıd

ch

))

Max. Weightage: 30

Part- A

Answer all questions. Each question has one weightage.

- 1. Is the collection of all ordered pairs (x, y) of real numbers with the operations $(x, y) + (x_1, y_1) = (x + x_1, y + y_1)$ and c(x, y) = (x, cy), a vector space over \Re ?
- 2. Is there a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ such that T(1,-1,1) = (1,0), and T(1,1,1) = (0,1)? If yes, find one such linear transformation.
- 3. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear map defined by T(x, y, z) = (x + y, 0, z). Find the rank of T.
- 4. Let T be the linear operator on R^3 defined by T(x, y, z) = (-z, x, -y). Find the matrix of T in the standard ordered basis for R^3 .
- 5. If A and B are $n \times n$ complex matrices, show that AB BA = I is impossible.
- 6. If V is an n-dimensional vector space over F, find the characteristic polynomials for identity operator and zero operator.
- 7. Prove that if E is the projection on R along N, then (I E) is the projection on N along R.
- 8. Let V be an inner product space and let α, β be vectors in V. Show that $\alpha = \beta$ if and only if $(\alpha | \gamma) = (\beta | \gamma)$ for every γ in V.

 $(8 \times 1 = 8 \text{ Weightage})$

Part- B Answer any two from each unit. Each question has two weightage Unit - I

- 9. Show that a linear transformation maps a linearly dependent set in to a linearly dependent set. Is it true that any linearly independent set is mapped to another linearly independent set under a linear transformation?
- 10. Show that any vector space of dimension n over F is isomorphic to F^n .
- 11. Find a basis and the dimension of the linear subspace of \Re^n given by $\{(x_1, x_2, ..., x_n) \in \Re^n / x_1 = 0, x_2 + ... + x_n = 0\}$.

- 12. If W is a subspace of a finite dimensional vector space V, then show that $\dim W + \dim W^0 = \dim V$
- 13. Let V and W be finite dimensional vector spaces over the field F, and let T be a linear transformation from V into W. Show that range of T' is the annihilator of the null space of T.
- 14. Let T be a linear operator on V. If every subspace of V is invariant under T, show that T is a scalar multiple of the identity operator.

Unit-III

- 15. Let E be a projection of V and let T be a linear operator on V. Prove that both the range and null space of E are invariant over T if and only if ET = TE.
- 16. Show that $(\alpha \mid \beta) = x_1 y_1 + x_2 y_1 x_1 y_2 + 4x_2 y_2$, where $\alpha = (x_1, x_2)$ and $\beta = (y_1, y_2)$, defines an inner product on \Re^2 .
- 17. State and prove Bessel's inequality.

 $(6 \times 2 = 12 \text{ Weightage})$

Part- C

Answer any two from the following four questions. Each question has Five weightage.

18. (a) If W_1 and W_2 finite dimensional subspaces of a vector space V, then show that W_1+W_2 is finite dimensional and $\dim W_1+\dim W_2=\dim(W_1\cap W_2)+\dim(W_1+W_2)$.

- (b) Suppose that $\{x_1,\ldots,x_m\}$ are linearly independent vectors in a vector space V, but $\{y\}\cup\{x_1,\ldots,x_m\}$ is linearly dependent. Then show that y can be written as a unique linear combination of $\{x_1,\ldots,x_m\}$.
- 19. (a) State and prove rank nullity theorem.
 - (b) If T is a linear operator on an n dimensional vector space V whose range and null space are identical, then show that n is even.
- 20. (a) Show that minimal polynomial and characteristic polynomial for a linear operator have the same roots except for multiplicities.
 - (b) Let V be a finite dimensional vector space over the field F and let T be a linear operator on V. Then, show that T is diagonalizable if and only if the minimal polynomial for T has the form $p = (x c_1) \cdots (x c_k)$ where $c_1, ..., c_k$ are distinct elements of F.
- 21. If V is a real or complex vector space with an inner product (|), then for any α, β in V, prove that (a) $(\alpha | \beta) = 0$, $\forall \beta \in V \Rightarrow \alpha = 0$.

(b)
$$|(\alpha \mid \beta)| \le ||\alpha|| ||\beta||$$
, and

(c)
$$\|\alpha + \beta\|^2 + \|\alpha - \beta\|^2 = 2\|\alpha\|^2 + 2\|\beta\|^2$$

1M1N19074

(Pages: 2)	Reg. No:
	Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Mathematics Degree Examination, November 2019 MMT1C01- Algebra - I

(2019 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part A

Answer all questions (Each question carries 1 weightage)

- 1. Give an example of an isometry of the plane which leaves the X axis fixed..
- 2. Find all proper nontrivial subgroups of $Z_2 \times Z_2$.
- 3. Prove that a direct product of abelian groups is abelian.
- 4. A Sylow 3-subgroup of a group of order 54 has order_____.
- 5. Find the reduced form and the inverse of the reduced form of $a^2b^{-1}b^3a^3c^{-1}c^4b^{-2}$.
- 6. Determine whether the polynomial $25x^5-9x^4-3x^2-12$ is irreducible over Q.
- 7. List all the elements of the group whose presentation is $(a, b : a^2 = 1, b^2 = 1, ab = ba)$
- 8. Let G = {e, a, b} be a cyclic group of order 3 with identity element e.
 Write the element (2e + 3a + 0b) (4e + 2a + 3b) in the group algebra Z₅(G) in the form re + sa + tb for r, s, t ∈ Z₅.

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer any two from each unit (Each question carries 2 weightage)

UNIT I

- 9. Find the order of 5 + < 4 > in the group $Z_{12} / < 4 >$.
- 10. Prove that M is a maximal normal subgroup of G if and only if G/M is simple.
- 11. State and Prove Burnside's Formula.

UNIT II

- 12. Let $\phi: Z_{12} \to Z_3$ be the homomorphism such that $\phi(1) = 2$
 - a. Find the kernel K of ф.
 - b. List the cosets in Z_{12}/K , showing the elements in each coset.
- 13. Give the isomorphic refinements of the two series:
 - $\{0\} < 10Z < Z \text{ and } \{0\} < 25Z < Z$
- 14. Prove that no group of order p^r is simple for r > 1.

UNIT III

- 15. Consider the evaluation homomorphism $\phi_3: Z_7[x] \to Z_7[x]$. Compute $\phi_3[(x^4+2x)(x^3-3x^2+4)]$.
- 16. Let G be a finite group of the multiplicative group $(F^*, .)$. Prove that G is cyclic.
- 17. Let R be a commutative ring and let $a \in R$. Show that $I_a = \{x \in R/ax = 0\}$ is a ideal of R.

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any two (Each question carries 5 weightage)

- 18. Let X be a G set and let $x \in X$.
 - a. Prove that $G_x = \{g \in G / gx = x \}$ is a subgroup of G.
 - b. Prove that $|Gx| = (G: G_x)$, where Gx is the orbit of x.
- 19. a. Prove that the group $Z_m X Z_n$ is cyclic and is isomorphic to Z_{mn} if and only if m and n are relatively prime.
 - b. State and Prove First Sylow Theorem.
- 20. a. Let G be a group containing normal subgroups H and K such that $H \cap K = \{e\}$ and H V K = G. Prove that G is isomorphic to H X K.
 - b. For a prime number p, Prove that every group G of order p² is abelian.
- 21. a. State and Prove Division Algorithm for F[x], where F is a field.
 - b. State and Prove Factor Theorem.

 $(2 \times 5 = 10 \text{ weightage})$