

| 1M1    | N1      | 91 | 03 |
|--------|---------|----|----|
| A LTAA | T. 4. W | 1. | ~~ |

| (Pages: 2) | Reg. No: |
|------------|----------|
|            | Mame.    |

### FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

### First Semester M.Sc Statistics Degree Examination, November 2019 MST1C01 – Analytical Tools for Statistics – I

(2019 Admission onwards)

Time: 3 hours

Max. Weightage: 30

### PART A Answer any four(2 weightages each)

- 1. Define the continuity of multivariable function. Give an example
- 2. Define local maxima and minima of multivariable function.
- 3. Find the real and imaginary part of the complex function:  $w=z^2+3z$ ; where z=3+5i.
- 4. State Cauchy's residue theorem.
- 5. What is an analytic function? Is  $f(z) = e^z$  is analytic? Justify
- 6. Define residues and poles. Give one example.
- 7. What is the Laplace transform of  $f(t) = \cos(at)$

(2 x 4=8 weightages)

## PART B Answer anyfour(3 weightages each)

- 8. Show that the function  $f(x,y) = \begin{cases} \frac{x-y}{x^2+y^2}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$  is continuous at origin.
- 9. Find Jacobian of transformation of  $f(x, y) = x^3 + y^3 3x 12y + 20$
- 10. Obtain the power series expansion of the function  $f(z) = \frac{1}{z+i}$  at the point z = a.
- 11. State and prove Morera's theorem
- 12. State and prove Cauchy Riemann conditions
- 13. Show that, for the function f with first three derivatives,

$$f', f'', f''' L(f''') = s^3 L(f) - sf(0) - sf'(0) - f''(0)$$

14. Solve the initial value problem using Laplace transformation

$$y'' - 2y + 3 = t$$
,  $y'(0)=1$ ,  $y(0)=1$ 

(3x 4=12 weightages)

## PART C Answer any two(5 weightages each)

- 15. State and prove Taylor's theorem for multivariable function.
- 16. (a) Varify Cauchy-Riemann equations:  $f(z)=z^3+z+1$ 
  - (b) f(z) = u+iv is an analytic function with u=2x(1-y). Determine the function completely.
- 17. State and prove Cauchy's integral theorem.
- 18. Find Laplace transforms of following functions
  - (a)  $tSin\theta t$
  - (b)  $Cos\pi t. e^{-32t}$
  - (c)  $te^t + cosht$

(5x2=10 weightages)

9

| 1 | M   | 1  | N   | 19 | 11 | 14 |
|---|-----|----|-----|----|----|----|
|   | TAT | ж. | 7.4 | 11 | 4. |    |

| (P | 20 | PS | :2 | ١ |
|----|----|----|----|---|
| 1  | as | 00 |    | J |

Reg. No:....

Name: .....

#### FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

### First Semester M.Sc Statistics Degree Examination, November 2019 MST1C02 – Analytical Tools for Statistics – II

(2019 Admission onwards)

Time: 3 hours

Max. Weightage: 30

## Part A Short Answer Type questions (Answer any four questions. Weightage 2 for each question)

- 1. Distinguish between linear dependence and independence
- 2. Define Inner product and orthogonality.
- 3. Explain Inverse of a partitioned matrix
- 4. Distinguish between image space and kernel of a linear mapping.
- 5. Show that the eigen values of all symmetric matrices are real.
- 6. Define algebraic multiplicity and geometric multiplicity
- 7. State Rank Nullity Theorem.

 $(4 \times 2 = 8 \text{ weightage})$ 

## Part B Short Essay Type/ problem solving type questions (Answer any four questions. Weightage 3 for each question)

- 8. Define direct sum and compliment of a subspace. Write the necessary and sufficient condition for sum of two subspaces to be direct sum.
- 9. Intersection of two subspaces is also a subspace.
- 10. Let T be a linear operator on  $R^2$  represented by the matrix  $A = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}$ . Find the characteristic values of T.
- 11. Let V be a vector spaces of functions with basis  $S = \{e^{3t}, te^{3t}, t^2e^{3t}\}$  and let D: V $\rightarrow$ V be the differential operator. Find the matrix of linear transformation of D relative to basis S.

- 12. State and prove Cayley-Hamilton theorem
- 13. Define G inverse and Moore-Penrose inverse.
- 14. Explain extreme of quadratic forms and simultaneous diagonalisation of matrices.

 $(4 \times 3 = 12 \text{ weightage})$ 

# Part C Long Essay Type questions (Answer any two questions. Weightage 5 for each question)

- 15. a) Show that the vectors (1, 2, 1), (2, 1, 3) and (1, 0, 1) form a basis of  $\mathbb{R}^3$ .
  - b) Let V be a finite dimensional vector space and let  $\{v_1, v_2, ..., v_n\}$  be any basis. Prove that if a set has more than n vectors, then it is linearly dependent.
  - c) Compute an orthonormal basis for the basis  $S = \{u1, u2, u3\}$  where  $u_1 = (1, -2, -1), u_2 = (-1, 1, -1)$  and  $u_3 = (1, -2, 1)$ .
- 16. a) Distinguish between Hermitian and skew Hermitian matrices,
  - b) Show that the diagonal elements of a Hermitian matrix must necessarily be real.
  - c) Define Idempotent matrix, Nilpotent matrix
  - d) Show that every matrix A such that  $A^2 = A$  is similar to a diagonal matrix.
- 17. a) Define Jordan canonical form of a matrix

b) Find the Jordan canonical form for 
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

- 18. a) Show that Moore-Penrose inverse is unique.
  - b) Find the solution of the homogeneous system

$$x + y - 2z + 2s - t = 0,$$

$$x + y - z + 2s + 2t = 0,$$

$$x + 4y - 7z + s + t = 0,$$

$$x - 2y + 3z - s + 2t = 0.$$

c) Classify the quadratic form,  $x^2 + 2y^2 + z^2 + 2xy + 6xz + 2yz$ .

 $(2 \times 5 = 10 \text{ weightage})$ 

| 1M1   | NI  | 01 | 05 |
|-------|-----|----|----|
| TIVIT | 111 | 71 | 05 |

| (Pages: 2) | Reg. No: |
|------------|----------|
|            | Name:    |

# FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE First Semester M.Sc Statistics Degree Examination, November 2019 MST1C03 – Distribution Theory

(2019 Admission onwards)

Time: 3 hours

Max. Weightage: 30

## Part A Short Answer Type questions (Answer any fourquestions. Weightage 2 for each question)

- 1. Define Moment generating function. How will you obtain mean and variance from it?
- 2. Obtain the distribution of the sum of iid geometric random variables.
- 3. Define power series distribution. Also obtain its moment generating function.
- 4. Define Pareto distribution. Obtain its geometric mean.
- 5. Derive the joint distribution of all the order statistics of a random sample of size n from a population with pdf  $f(x)=e^{-x}$ , x>0 and 0 elsewhere.
- 6. Obtain the pdf of sample range based on a random sample of size n from a uniform distribution over (0,1).
- 7. If (X,Y) have a joint pdf given by f(x,y) = 2, 0 < x < y < 1 then find P(0 < X < 0.5, 0 < Y < 0.3).

 $(4 \times 2 = 8 \text{ weightage})$ 

# Part B Short Essay Type/ problem solving type questions (Answer any four questions. Weightage 3 for each question)

- 8. Obtain the p.g.f. of binomial random variable. Deduce the first four factorial moments using the p.g.f. and hence obtain the first four central moments.
- Derive the p.d.f. of a compound Poisson distribution with a gamma compounding density.

- 10. Define hypergeometric distribution and give a practical situation where this distribution arises. Derive the expressions of its mean and variance.
- 11. Define a trinomial distribution and obtain the correlation coefficient between its component random variables. Also obtain the conditional distributions and conditional means.
- 12. Obtain the density of the difference of two iid exponential random variables.
- 13. Obtain the conditional distributions of bivariate normal distribution.
- 14. What is Pearson system of distributions? Obtain the distribution when the roots of the quadratic equation are real and of opposite signs.

 $(4 \times 3 = 12 \text{ weightage})$ 

# Part C Long Essay Type questions (Answer any two questions. Weightage 5 for each question)

- 15. (a) Derive the conditional distribution of  $X_{(s)}$  given  $X_{(r)}$ , s > r, where  $X_{(r)}$  and  $X_{(s)}$  are the r-th and s-th order statistics.
  - (b) Show that min  $(X_1, X_2, \ldots, X_n)$  follows exponential distribution if and only if  $X_i$  's follow exponential distribution.
- 16. Define noncentral F-distribution and derive its density.
- 17. Derive the joint distribution of the sample mean and the variance of a random sample taken from a normal population with mean  $\mu$  and variance  $\sigma^2$ .
- 18. If X<sub>1</sub>, X<sub>2</sub>, ..., X<sub>n</sub> is a random sample from lognormal distribution then obtain the distribution of the geometric mean. Also obtain the mean, median and mode of lognormal distribution.

(2 x 5= 10 weightage)

| 1M11 | N191 | 06 |
|------|------|----|
|------|------|----|

|   | 7 |
|---|---|
| ٠ | 4 |
|   |   |

Reg. No:....

Name: .....

### FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE First Semester M.Sc Statistics Degree Examination, November 2019 MST1C04 - Probability Theory

(2019 Admission onwards)

Time: 3 hours

Max. Weightage: 30

#### Part A

### Short Answer Type questions (Answer any four questions. Weightage 2 for each question)

- 1. Define sigma field of subsets of a set. Prove that sigma field is a monotone field.
- 2. Let  $A_n = \begin{cases} [x: 0 \le x \le 1] \text{ if } n \text{ is odd} \\ [x: 1 \le x \le 2] \text{ if } n \text{ is even} \end{cases}$ . Find  $\lim \sup A_n$  and  $\lim \inf A_n$ .
- 3. Give an example of a class of sets closed under finite unions and finite intersections but not under complementation.
- 4. Show that a characteristic function is uniformly continuous in any finite interval.
- 5. Prove or disprove the statement "almost sure convergence implies convergence in probability".
- 6. If f(X) is continuous real valued function and  $X_n$  converges to X in probability, then prove that  $f(X_n)$  converges to f(X) in probability.
- 7. Does the Lindeberg condition hold for the sequence  $X_n$  of independent random variables with  $P\left\{X_n = \pm \frac{1}{2^n}\right\} = \frac{1}{2}$ .

 $(4 \times 2 = 8 \text{ weightage})$ 

#### Part B

### Short Essay Type/ problem solving type questions (Answer any four questions. Weightage 3 for each question)

- 8. Let  $A_n = \{(x, y): 0 \le x \le n, 0 \le y \le \frac{1}{n}\}, (x, y) \in \mathbb{R}^2$ . Show that  $A_n$  is not monotone but  $\lim_{n \to \infty} A_n$  exists. Also find  $\lim_{n \to \infty} A_n$ .
- 9. If  $P_1$  and  $P_2$  are two probability measures, then show that  $P = \alpha P_1 + (1 \alpha)P_2$ ,  $0 < \alpha < 1$  is also a probability measure.

- 10. Show that  $\frac{1}{n+1}\sum_{k=0}^{n}e^{ikt/n}$  is a characteristic function of a random variable. To which random variable the sequence of random variables corresponding to the above characteristic functions converge in distribution.
- 11. Establish Borel 0-1 Law.
- 12. State and prove Jordan decomposition theorem for distribution functions.
- 13. Define conjugate pair of distributions. Obtain the conjugate pair of of the pdf,

$$f(x) = \frac{1}{2}e^{-|x|}, -\infty < x < \infty.$$

14. Let  $\{X_n\}$  be an independent sequence of random variables such that each  $X_n$  only attains the values 0 and 1 with positive probability. Prove that  $\{X_n\}$  satisfies the central limit theorem if the series  $\sum_{n=1}^{\infty} P(X_n = 0) P(X_n = 1)$  diverges.

 $(4 \times 3 = 12 \text{ weightage})$ 

# Part C Long Essay Type questions (Answer any two questions. Weightage 5 for each question)

- 15. (a) Show that the intersection of an arbitrary number of sigma fields is a sigma field.
  - (b) Let B be a Borel set in R and  $B' = \{a + x : x \in B\}$ ,  $a \in R$ . Show that B' is also a Borel set.
- 16. (a) State and prove inversion theorem on characteristic function.
  - (b) Find the density function whose characteristic function is  $e^{-|t|}$
- 17. (a) Prove that  $E|X + Y|^r \le C_r E|X|^r + C_r E|Y|^r$ , where  $C_r = \begin{cases} 1, & \text{if } r \le 1, \\ 2^{r-1}, & \text{if } r > 1 \end{cases}$ 
  - (b) Let  $X_n \xrightarrow{P} X$  and  $Y_n \xrightarrow{P} Y$  then show that  $X_n + Y_n \xrightarrow{P} X + Y$ .
- 18. (a) Let  $\{X_n\}$  be a sequence of i.i.d. random variables with characteristic function  $\varphi(u)$ . Then prove that  $S_n/n \stackrel{P}{\to} a$  if and only if  $\varphi'(0) = a$ , where  $S_n = \sum_{k=1}^n X_k$ .
  - (b) State and prove Kolmogorov's three series theorem.

 $(2 \times 5 = 10 \text{ weightage})$