1M1N18018

(Pages: 2)

Reg. No:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Degree Examination, November 2018

MCHE1B01 - Basic Concepts in Quantum Chemistry & Group Theory

(2016 Admission onwards)

Max. Time: 3 hours

Max. Weightage: 36

SECTION A

Answer all questions Each question carries a Weightage of 1

- 1. Explain the Born interpretation of the wave function.
- 2. Determine the average value of the position of an electron at the lowest energy level in a particle-in-a-box.
- 3. Determine the uncertainty in position for an electron travelling at 2 x 10⁶ m/s with an uncertainty in velocity of 1% of the true value.
- 4. Examine if e^{ikx} is an eigen function of momentum operator \hat{P}_x .
- 5. Define well behaved wave function.
- 6. Evaluate the commutator $[\hat{L}_+, \hat{L}_z]$.
- 7. What are Hermitian operators?
- 8. What are spin orbitals? Write the general form of spin orbitals.
- 9. Based on the plot of vibrational wave function at v = 0, explain quantum mechanical tunnelling.
- 10. Define cyclic groups and abelian groups.
- 11. Give the point group of i) PCl₃, ii) ethylene, iii) allene, iv) NH₃.
- 12. What is meant by reducible representations and irreducible representations of point groups?

 $(12 \times 1 = 12 \text{ Weightage})$

SECTION B

Answer *any eight* questions Each question carries a Weightage of 2

- 13. Explain space quantisation of orbital and spin angular momentum.
- 14. Briefly discuss the postulates of quantum mechanics.
- 15. Distinguish between radial density plots and radial distribution plots.
- 16. For a particle on a ring, how are the rotational quantum numbers generated?
- 17. Apply Schrodinger equation for particle in a 1-D box. Obtain the normalized wave function.

- 18. What are spherical harmonics? Calculate Y_0^0 , and Y_1^0 .
- 19. Show that \hat{L}^2 and Hamiltonian operator of a rigid rotator have the same set of eigen functions.
- 20. Show that in associated Legendre polynomial, |m| cannot have values greater than 1.
- 21. Write the matrix representation for inversion operation and proper rotation.
- 22. Show that symmetry elements of $C_{2\nu}$ point group forms a mathematical group.
- 23. Set up the group multiplication table for C_{3v} point group.
- 24. What is reduction formula? Find out the irreducible representation of C_{3v} point group using the character table

C _{3v}	Е	2C ₃	$3\sigma_v$
Aı	1	1	1
A ₂	1	1	-1
Е	2	-1	0

 $(8 \times 2 = 16 \text{ Weightage})$

SECTION C Answer any two questions Each question carries a Weightage of 4

- 25. Discuss the quantum mechanical treatment of simple harmonic oscillation and calculate $\Psi_0(x)$.
- 26. Using Great Orthogonality Theorem derive the C_{4v} character table.

00

- 27. Write the Schrodinger equation for Hydrogen atom in spherical polar coordinates Separate the variables and solve the radial part of the wave function. Also get the expression for energy.
- 28. Solve Schrodinger equation for particle on a ring. Calculate the expectation value c energy and angular momentum.

 $(2 \times 4 = 8. \text{Weightage})$

	SE 2015	100	001	-
1	MI	NI	801	9

R	n	10
n	Dagge	11
13	Pages	41

Reg.	No													,	

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Degree Examination, November 2018 MCHE1B02 - Chemistry of Elements

(2018 Admission onwards)

Max. Time: 3 hours

Max. Weightage: 36

Section A Answer all questions. Each question carries 1 Weightage.

- 1. What are hypervalent molecules? Give two examples.
- 2. What are Van der Waals forces? Suggest any four Van der Waals forces existing between molecules.
- 3. Explain Usanovich concept of acids and bases.
- 4. Would you expect HNO₃ and SbF₅ to behave as an acid or base in liquid HF? Explain giving equations.
- 5. Which has higher electron affinity, C or N? Why?
- 6. How is diborane converted to borazine?
- 7. What are molecular sieves?
- 8. What is polythiazil? How it is prepared?
- 9. What are the hydrolysis products of uranyl ion in aqueous solutions?
- 10. What is Latimer diagram? Give any two applications.
- 11. What is radiation dosimetry?
- 12. Give one example for thermonuclear reactions.

(12x1=12 Weightage)

Section B Answer any eight questions. Each question carries 2 Weightage.

- 13. Explain electroneutrality principle with suitable examples.
- 14. Explain briefly the principle for the construction of Walsh diagram. What is the information obtained from these diagrams?
- 15. State HSAB principle. Give any two applications of HSAB principle.
- 16. How will you determine the enthalpies of acid-base reactions?
- 17. State and explain Wade's rule.

- 18. Explain the structure and bonding in B_2H_6 .
- 19. What are silicones? How are they synthesised? Give any two uses.
- 20. State VSEPR theory. Discuss the applications of VSEPR theory with suitable examples.
- 21. What are super heavy elements? How are they prepared?
- 22. What is diagonal relationship? Explain with suitable examples.
- 23. Briefly explain the principles of neutron activation analysis.
- 24. Discuss the working principle of GM counter.

(8x2 = 16 Weightage)

Section C Answer any two questions. Each question carries 4 Weightage.

- 25. What is Ellingham diagram? Discuss applications.
- 26. Discuss the important chemical reactions that can occur in liquid sulphur dioxide. Mention the important advantages of liquid sulphur dioxide as a solvent.
- 27. Discuss the synthesis, structure and bonding in Phosphorous-Nitrogen and Phosphorous-Sulphur compounds.
- 28. Write notes on

0

- a) Radiolysis of water
- b) Nuclear models

(2x4=8 Weightage

	22/12	-	10001
1	M	1 N	18021
-25	17.3	11.	LUUMI

(Pages:2)

Reg.	No:	 	 ٠.							

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Degree Examination, November 2018

MCHE1B04 - Thermodynamic, Kinetics & Catalysis

(2016 Admission onwards)

Max. Time: 3 hours

Max. Weightage: 36

Section A

(Answer all questions. Each question has 1 Weightage)

- 1. Derive Gibbs-Duhem equation.
- 2. Derive an equation to show the variation of chemical potential with temperature.
- 3. Explain the principle of micro reversibility and Onsager reciprocal relations.
- 4. Differentiate between diffusion controlled and activation controlled reactions.
- 5. Explain the influence of pressure and solvation on the reaction rate in solution.
- 6. "Unimolecular gas phase reactions follow first order kinetics at high pressures and second order kinetics at low pressures'. Justify your statement.
- 7. Show that Freundlich adsorption isotherm is a special case of Langmuir adsorption isotherm.
- 8. On raising the temperature from 27 °C to 37 °C, the rate of a reaction is doubled.

 Calculate the activation energy of the reaction?
- 9. Explain the principle of ESCA technique.
- 10. Explain the terms involved in London equation for the activation energy calculation.
- 11. Distinguish between coupled and non-coupled reactions.
- 12. What is the effect of pH and temperature on enzyme catalysis?

 $(12 \times 1 = 12 \text{ Weightage})$

Section B

(Answer any 8 questions. Each question carries 2 Weightage)

- 13. Explain any two methods for the determination of partial molar quantities.
- What is meant by excess functions? Explain the expressions for excess functions for free energy, entropy, enthalpy and volume.
- 15. C_v for uranium metal is 3.04 JK⁻¹mol⁻¹ at 20 K. Calculate the absolute entropy of the metal in JK⁻¹mol⁻¹ at 20K.
- 6. Explain molecular beam and flash photolysis methods employed to monitor the progress of fast reactions.

- . Show that absolute rate theory agrees with simple collision theory for atom combination reactions.
 - Differentiate between primary and secondary salt effects. 18.
 - Derive Gibbs'-Duhem- Margules equation. 19.
 - Explain the concept of attractive and repulsive surfaces by constructing its potential 20. energy surface.
 - Explain the effect of temperature and pressure on explosion limits in H₂-O₂ reaction. 21.
 - The adsorption of a gas is described by Langmuir adsorption isotherm with Ka = 0.85 22. kPa⁻¹. Find the pressure at which the surface coverage is (a) 15%, (b) 95%.
 - Explain general acid and specific acid catalysis with suitable examples 23.
 - Derive the Eyring equation? 24.

(

00

 $(8 \times 2 = 16 \text{ Weightag})$

Section C

(Answer any 2 questions. Each question carries 4 Weightage)

- (i)Deduce the laws of Raoult's ebullioscopy and cryoscopy. 25.
 - (ii) An aqueous solution of a non-volatile solute boils at 100.17°C. At what temperatur would it freeze? (For water, $K_b = 0.52 \text{K kgmol}^{-1}$ and $K_f = 1.86 \text{ K kgmol}^{-1}$.
- (i) Discuss briefly the Rice-Herzfeld mechanism of organic decomposition reaction. 26.
 - (ii) The following Rice-Herzfeld mechanism has been proposed for the gas phase pyrolysis of methane, CH₄

$$CH_4 \xrightarrow{k_1} CH_3 + H$$

$$CH_3 + CH_4 \xrightarrow{k_2} C_2H_6 + H$$

$$CH_4 + H \xrightarrow{k_3} CH_3 + H_2$$

$$H + CH_3 + M \xrightarrow{k_4} CH_4 + M$$

Assuming steady state approximation for [H] and [CH3], derive the rate-law for the formation of C2H6.

- (i) Explain the BET theory of adsorption. 27.
 - (ii) Discuss the use of Langmuir and BET isotherms for surface area determination.
- Explain the Michaelis and Menten theory of the mechanism of enzyme catalysis? 28. $(2 \times 4 = 8 \text{ Weight})$