FAROOK COLLEGE (AUTONOMOUS), DEPARTMENT OF STATISTICS

First Semester M.Sc Degree Examination, November 2018 MSTA1B01 – Measure Theory and Integration

Time: 3 hours

Maximum Weightage: 36

Answer Scheme

Part A

(Answer all questions; each question carries 1 weightage)

1. Definition: 0.5 wt, Proof: 0.5 wt

2. $\sigma(C) = {\phi, A_1, A_2, \Omega} : 1 \text{ wt}$

3. Definition: 0.5 wt, Example: 0.5 wt

4. Definition of f^+ and f^- : 0.75 wt, Proof: 0.25 wt

5. Definition: 0.5 wt, Example: 0.5 wt.

6. Statement: 1 wt

7. Definition: 0.75 wt, Example: 0.25 wt

8. Definition: 1 wt

9. Convergence of monotone sequence of sets: 0.75 wt, Convergence of arbitrary sequence of sets: 1 wt

10. Product sigma field: 0.5 wt, Product measure: 0.5 wt

11. Definition: 0.5 wt, Two properties: 0.5 wt

12. Definition: 1 wt

(12x1=12 weightage)

Part B

(Answer any eight questions; each question carries 2 weightage)

13. Complete proof: 2 wt

14. Defining an increasing sequence of simple functions: 1.5 wt, Complete proof: 2 wt

15. Four proofs: 0.5 wt each

16. Statement: 0.25 wt, Proof: 1.75 wt

17. Definition: 0.5 wt, Proof: 1.5 wt

18. Statement: 0.5 wt, Proof: 1.5 wt

19. Definition: 1 wt, Proof: 1 wt

20. Definition: 1 wt, Proof: 1 wt

21. Statement: 1 wt, Proof: 1 wt

22. Definition: 1 wt, Problem: 1 wt

23. Definitions of Lebesgue measure and Lebesgue Stieltjes measure: 1.5 wt, Proof: 0.5 wt

24. Statement: 1.5 wt, Importance: 0.5 wt

(8x2=16 weightage)

Part C

(Answer any two questions; each question carries 4 weightage)

25. i) Definition of integral of simple function: 1 wt, definition of integral of arbitrary measurable function: 1 wt

ii) Proof: 2 wt

26. i) Statement: 0.5 wt, Proof: 1.5 wt

ii) Definitions: 1 wt each

27. Definition: 1 wt, Statements: 1 wt, Proofs: 2 wt

28. Statement: 1 wt, Proof: 3 wt

(2x4=8 weightage)

(Pages : 2)

Reg. No:....

Name: ...

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Degree Examination, November 2018 MSTA1B02 – Analytical Tools for Statistics – I

(2017Admission onwards)

Max. Time: 3 hours

Max. weightate: 36

Part A

(Answer ALL the questions. Weightage 1 for each question)

- 1. Define functions of bounded variation in an interval.
- 2. Briefly describe conditions for integrability.
- 3. State mean value theorem. Illustrate with an example.
- 4. Define point wise convergence of a sequence of functions.
- 5. State Weirstrass approximation theorem.
- 6. Find $\lim_{(x,y)\to(0,0)} \frac{x^2-xy}{\sqrt{x}+\sqrt{y}}$.
- 7. Find the values of any local maxima and minima of the function $f(x) = x^2 4$, for the domain $-2 \le x \le 2$.
- 8. Briefly explain the concept 'directional derivative'.
- 9. State inverse function theorem for a multivariable function.
- 10. Define Laplace transform and inverse Laplace transform.
- 11. Describe properties of the Fourier transform.
- 12. State Fourier integral theorem.

 $(12 \times 1=12 \text{ weightage})$

Part B

(Answer any EIGHT questions. Weightage 2 for each question)

- 13. Let $f_n(x) = \frac{x^2}{(1+x^2)^2}$, $x \in \mathbb{R}$, $n \ge 1$ and $f(x) = \sum_n f_n(x)$. Check whether f_n is continuous.
- 14. State and prove the first fundamental theorem of integral calculus...
- 15. Show that the sequence of functions $\{f_n\}$, where $f_n(x) = \frac{x}{1+n x^2}$, $x \in R$ converges uniformly on any closed interval [a,b].
- 16. Prove: If $\{f_n\}$ be a sequence of functions such that $\lim_{n\to\infty} f_n(x) = f(x)$ for all $x \in [a,b]$ and let $M_n = \sup_{x\in [a,b]} |f_n(x) f(x)|$, then $f_n \to f$ uniformly on [a,b] if and only if $M_n \to 0$ as $n \to \infty$.

- 17. Show that the series for which $S_n(x) = \frac{1}{1+nx}$ can be integrated term by term on [0,1], though they are not uniformly convergent.
- 18. Discuss the Taylor's theorem for a multivariable function.
- 19. Show that $f(x, y, z) = x^2 + y^2 + z^2$ is continuous at the origin.
- 20. Find all the local maxima, minima and saddle points of the function $f(x,y) = x^2 + xy + y^2 + 3x 3y + 4.$
- Suppose f is monotonic and α is continuous and monotonically increasing. Then f ∈ R(α).
- 22. Find the Fourier integral representation of $f(x) = \begin{cases} 1, & \text{if } |x| < 1 \\ 0, & \text{if } |x| > 1. \end{cases}$
- 23. Determine the Laplace transform of (a) $t \cos h \, at$ (b) $e^{at} \sin \omega t$.
- 24. Determine inverse Laplace transform of (a) $\frac{1}{s^2+4s}$ (b) $\frac{9}{s^2} \frac{(s+1)}{(s^2+9)}$.

 $(8 \times 2 = 16 \text{ weightage})$

Part C

(Answer any TWO questions. Weightage 4 for each question)

- 25. (a) Describe Fundamental Properties of the Riemann-Stieltjes Integral
 - (b) Let f be a bounded function on [a, b] with finitely many discontinuities. Suppose α is continuous at every point where f is discontinuous. Then $f \in R(\alpha)$.
- 26. Prove: Let $\{f_n\}$ be a sequence of differentiable functions on [a,b] such that it converges at least one point $x_0 \in [a,b]$. If the sequence of differentials $\{f'_n\}$ converges uniformly to G on [a,b], then the given sequence $\{f_n\}$ converges uniformly on [a,b] to f and f(x)=G(x).
- 27. a) Give interpretation of Lagrangian multipliers.
 - (b) Find the extreme values of $f(x, y) = x + y^2 + 2z$ subject to $4x^2 + 9y^2 36z^2 = 36$.
- 28. (a) Describe the properties of Fourier series.
 - (b) Find the Fourier series expansion of $f(x) = \frac{x^2}{2}$, $-\pi < x < \pi$.

Hence show that $\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots$

(2 x 4=8 weightage)

M1N18106

(Pages: 2)

Reg.	No:						145		*		*	***								*	*	9()	Ť		
------	-----	--	--	--	--	--	-----	--	---	--	---	-----	--	--	--	--	--	--	--	---	---	-----	---	--	--

Name:

FAROOK COLLEGE (AUTONOMOUS). KOZHIKODE

First Semester M.Sc Degree Examination, November 2018 MSTA1B04 – Sampling Theory

(2017 Admission onwards)

Max. Time: 3 hours

Max. weightage: 36

PART A

(Answer ALL questions. Weightage 1 for each question)

- 1. What is sampling error? How do you measure it?
- 2. Define non probability sampling. Give two examples.
- 3. Illustrate the selection of a circular systematic sample by an example.
- 4. What are the advantages of stratified sampling over simple random sampling?
- 5. Explain optimum allocation in stratified sampling.
- 6. What do you mean by auxiliary variable techniques in estimation?
- 7. Define ratio estimate of population mean.
- 8. Define Des Raj ordered estimate of population total.
- 9. What do you mean by Murthy's unordered estimator?
- 10. Discuss the efficiency of cluster sampling over simple random sampling.
- 11. Define two phase sampling.
- 12. Write a note on non sampling errors.

 $(12 \times 1 = 12 \text{ weightage})$

PART B

(Answer any EIGHT questions. Weightages 2 for each question)

- 13. What are the principal steps in a large scale sample survey? Explain.
- 14. With usual notation, show that $E(s^2) = \sigma^2$ in simple random sampling with replacement from a finite population.
- 15. How do you estimate population proportion using simple random sample with replacement? Also derive the sampling variance of your estimate.
- 16. Explain the cost function in stratified random sampling. Also find the optimum allocation of sample size into various strata when the total cost of survey is given.

- 17. Obtain confidence interval for population total using stratified random sampling.
- 18. Define Hartley and Ross unbiased ratio type estimator. Show that it is unbiased.
- 19. Explain the method of estimating population mean using regression estimator. Obtain the relative bias of your estimator.
- 20. Show that Lahiri's method ensures PPS sample.
- 21. Define Horvitz-Thompson estimator of population total and show that it is unbiased.
- 22. How would you estimate population mean \overline{Y} using a simple random sample of n clusters from N clusters each of M elements. Derive the sampling variance of your estimate in terms of intraclass correlation coefficient ρ .
- 23. Explain various estimators of population mean in cluster sampling with unequal clusters
- 24. Explain two-stage sampling. Give advantages of it over one stage cluster sampling.

 $(8 \times 2 = 16 \text{ weightage})$

PART C

(Answer any TWO questions. Weightages 4 for each question)

25. (a) If the loss function due to an error in \bar{y} is $\lambda(\bar{y} - \bar{Y})^2$ where λ is constant and if the cost function is $C = c_0 + c_1 n$, show that the most economical value of n is

$$n = \sqrt{\frac{\lambda S^2}{c_1}}.$$

- (b) With usual notation, show that systematic sampling is efficient than simple random sampling if and only if $S_{wsy}^2 \ge S^2$.
- 26. Explain the method of estimating gain due to stratification over simple random sampling using stratified random sample.
- 27. (a) Explain combined ratio estimator and separate ratio estimator of population total.
 - (b) When do you prefer regression method over ratio method? Why?
- 28. (a)Construct an unbiased estimator of population mean using two-stage sampling.
 - (b) Derive Yates-Grundy form of estimated variance of Horvitz-Thompson estimator of population mean under PPSWOR.

 $(2 \times 4 = 8 \text{ weightage})$

(Pages : 2)

Reg. No:

FAROOK COLLEGE (AUTONOMOUS). KOZHIKODE

First Semester M.Sc Degree Examination, November 2018 MSTA1B05 – Distribution Theory

(2017 Admission onwards)

Max. Time: 3 hours

Max. weightage: 36

PART-A

Answer all Questions Each question carries a weightage of 1.

- 1. Define moment generating function. If the r^{th} raw moment of a random variable X is $\mu_r' = (r+1)!2^r$, r = 0,1,2,... find the moment generating function of X.
- 2. If X is a Poisson variate with mean λ show that $E(X^2) = \lambda E(X+1)$. Also show that if X and Y are independent Poisson variates, the conditional distribution of X given X+Y is binomial.
- 3. Show that Poisson distribution is a special case of power series distribution.
- 4. If X is distributed according to U(0,1), show that -2log X is distributed according to chi square.
- 5. Obtain the distribution of X If Y = $\frac{(X-\mu)^c}{\lambda}$ has exponential distribution with p.d.f $f(y) = e^{-y}$
- 6. X is a random variable following Pareto distribution of first kind. Show the relationship P(X > uv / X > u) = P(X > v) holds for all u,v > 0. Is the converse true?
- 7. Distinguish between Beta distribution of the first kind and Beta distribution of the second kind. If *X* follow the latter, show that $Y = \frac{1}{1+X}$ follow the former.
- 8. If X and Y are independent standard Cauchy random variables then find the distribution of X + Y.
- 9. Define the log normal distribution and derive its p.d.f. Examine whether the distribution is symmetric.
- 10. The joint distribution of a bivariate discrete vector (X_1, X_2) is specified by

$$P(X_1 \geq x_1, X_2 \geq x_2) = p_1^{x_1} p_2^{x_2} \theta^{x_1 x_2},$$

 $x_1, x_2 = 0, 1, 2, ...; 0 \le \theta \le 1, 0 < p_1, p_2 < 1$. Obtain the marginal pmf of X_1 and X_2 . When will X_1 and X_2 be independent?

- 11. Define non- central t distribution. When will this reduce to the central t?
- 12. Define F statistic and write its probability density function.

(12 x1 = 12 Weightage)

PART B

Answer eight Questions Each question carries a weightage of 2.

- 13. If X is a non-negative integer valued random variable then find the p.g. f of (i) $P(X \le n)$ (ii) P(X = 2n)
- 14. Let X and Y be independent random variables following the negative binomial distributions. $NB(r_1, p)$ and $NB(r_2, p)$ respectively. Show that the conditional probability mass function of X given X + Y = t is hypergeometric.