1M1	NI	7328
TTITLE		1020

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Degree Examination, November 2017

MT1C01- Algebra - I

(2017 Admission onwards)

Max. Time: 3 hours

Max. Weightage: 36

Part A Answer all the questions (Each Question has weightage one)

- Find the order of (8,4,10) in the group $z_{12} \times z_{60} \times z_{24}$.
- 2 Compute the factor group $z_4 \times z_6 / <(0,1)>$.
- 3 Define normal and subnormal series of a group G and give an example.
- 4 Define a free group generated by a set A.
- 5 Show that every finite p-group is solvable.
- 6 Find the elements in S_n/A_n .
- 7 Let $\phi: G \to G'$ be a group homomorphism. If N is a normal subgroup of G then show that $\phi[N]$ is a normal subgroup of $\phi[G]$.
- 8 Define center and commutator subgroup of a group.
- Let $f(x) = x^4 3x^3 + 2x^2 + 4x 1$ and $g(x) = x^2 2x + 3$ be in $z_5[x]$. Find the quotient and reminder when f(x) is divided by g(x).
- 10 State Eisenstein Criterion.
- Let F be the ring of all functions mapping \mathbb{R} into \mathbb{R} , and let N be the subring of F consisting of all functions f such that f(2)=0. Is N is an ideal in F?.
- Define refinement of a subnormal series. Find a refinement of $\{0\} < 72z < 8z < z$.
- Find the center of S_3 .
- Find the order and number of Sylow 2-subgroups of S₃.

(14 x 1=14 weightage)

Part B Answer Any Seven Questions (Each Question has weightage two)

- If m divides the order of a finite abelian group G, then show that G has a subgroup of order m.
- Show that the group $z_m \times z_n$ is cyclic and is isomorphic to z_{mn} if and only if m and n are relatively prime.
- Let H be a normal subgroup of G. Then show that the cosets of H form a group G/H under binary operation (aH)(bH)=(ab)H
- Show that a nonzero polynomial $f(x) \in F[x]$ of degree n can have at most n zeros in the field.
- Let G be a group. Then show that set of all commutators $aba^{-1}b^{-1}$ for $a,b \in G$ generates subgroup of G.
- Let X be a G-set. Then show that G_x is a subgroup of G for each $x \in X$.
- 21 If N is a normal subgroup of G, and if H is any subgroup of G, then show that HVN=HN=NH
- 22 Show that any two composition series of a group G are isomorphic.
- 23 Show that the center of a finite nontrivial p-group is nontrivial.
- Show that no group of order 30 is simple.

 $(7 \times 2 = 14 \text{ weightag})$

Part C Answer Any Two Questions (Each Question has weightage Four)

- Let X be G-set and let $x \in X$. Then show that $|Gx|=(G:G_x)$. If |G| is finite, then |Gx| is a divisor of G.
- Derive the class equation for a group G. Find the conjugate classes of S₃ and verify the class equation.
- Let p be a prime. Let G be a finite group and let p divide |G|. Then show that G has an element of order p.
- a) Check whether the polynomial Φ_p(x) = x^{p-1}/_{x-1} is reducible over ℚ for any prime p.
 b) If F is a field, then show that every nonconstant polynomial f(x) ∈ F[x] can be factored in F[x] into a product of irreducible polynomials, the irreducible polynomials being unique except for order and for unit factors in F.

 $(4 \times 2 = 8 \text{ weighta})$

* 1.4	7329
	1114

Reg.	No:.	 				*	 *	+		
Nam	۵.									

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Degree Examination, November 2017

MT1C02- Linear Algebra (2017 Admission onwards)

Max. Time: 3 hours

Max. Weightage: 36

Part- A

Answer all questions. Each question has one weightage.

- 1. Is the collection of all sequences of complex numbers that converges to a real number, a vector space over C?
- 2. Show that if v and w are linearly independent vectors in V, then so are v + w and v w.
- 3. Prove that null space of a linear transformation is a subspace.
- 4. Find the coordinate matrix of (1,-4) relative to the ordered basis $\{(1,-1),(2,4)\}$ of \Re^2 .
- 5. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by T(x, y) = (x, y + 1, x + y). Is T linear?
- 6. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear map defined by T(x, y, z) = (y, 0, z). Find the rank of T.
- 7. What is the kernel of $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (x + z, x + y + 2z, 2x + y + 3z)?
- 8. If A and B are $n \times n$ complex matrices, show that AB BA = I is impossible.
- 9. Define annihilator of a subset S of a vector space V.
- 10. What do you mean by a diagonalizable operator?
- 11. Prove that if E is a projection on R along N, then I E is the projection on N along R.
- 12. Let V be a vector space over C with an inner product (|), show that $Im(\alpha \mid \beta) = Re(\alpha \mid i\beta)$.
- 13. Let (|) be the standard inner product on \Re^2 . If $\alpha = (1,2)$ and $\beta = (-1,1)$, find γ such that $(\alpha | \gamma) = -1$ and $(\beta | \gamma) = 3$.
- 14. Define orthonormal sets in an inner product space.

 $(14 \times 1 = 14 \text{ weightage})$

Part- B

Answer any seven from the following ten questions. Each question has two weightage

- 15. Show that a linear transformation maps a linearly dependent set in to a linearly dependent set. Is it true that any linearly independent set is mapped to another linearly independent set under a linear transformation?
- 16. Show that any vector space of dimension n over F is isomorphic to F^n .
- 17. Find a basis and the dimension of the linear subspace of \Re^n given

by
$$\{(x_1, x_2, \dots, x_n) \in \Re^n / x_1 + x_2 + \dots + x_n = 0 \}$$
.

- 18. If $T: V \to V$ a linear operator, then prove that $Range(T) \cap Nullspace(T) = \{0\} \iff \text{If } T(T(\alpha)) = 0, \text{ then } T(\alpha) = 0$
- 19. If W is a subspace of a finite dimensional vector space V, then show that $\dim W + \dim W^0 = \dim V$
- 20. If $B = {\alpha_1, \alpha_2, \alpha_3}$ be the basis for C^3 given by $\alpha_1 = (1,0,-1), \alpha_2 = (1,1,1), \alpha_3 = (2,2,0)$. Find the dual basis of B.
- 21. If T is a diagonalizable linear operator on a finite dimensional vector space V, then show that the characteristic polynomial for T is $f = (x c_1)^{d_1} \dots (x c_k)^{d_k}$.
- 22. Let W be a subspace of an inner product space V and $\beta \in V$. Show that $\alpha \in W$ is a best approximation to β by vectors in W if and only if $\beta \alpha$ is orthogonal to every vector in W.
- 23. Show that $(\alpha \mid \beta) = x_1 y_1 x_2 y_1 x_1 y_2 + 4x_2 y_2$, where $\alpha = (x_1, x_2)$ and $\beta = (y_1, y_2)$, defines an inner product on \Re^2 .
- 24. State and prove Bessel's inequality.

 $(7 \times 2 = 14 \text{ weightage})$

Part- C Answer any *two* from the following four questions. Each question has *four* weightage.

- 25. (a) Prove that two vectors in a vector space *V* are linearly dependent if and only if one of them is a scalar multiple of the other
 - (b) Suppose that $\{x_1,\ldots,x_m\}$ are linearly independent vectors in a vector space V, but $\{y\}\cup\{x_1,\ldots,x_m\}$ is linearly dependent. Then show that y can be written as a unique linear combination of $\{x_1,\ldots,x_m\}$.
- 26. State and prove rank nullity theorem. If T is a linear operator on an n dimensional vector space V whose range and null space are identical, then show that n is even.
- 27. (a) Show that minimal polynomial and characteristic polynomial for a linear operator have the same roots except for multiplicities.
 - (b) Let V be a finite dimensional vector space over the field F and let T be a linear operator on V. Then, show that T is diagonalizable if and only if the minimal polynomial for T has the form $p = (x c_1) \cdots (x c_k)$ where $c_1, ..., c_k$ are distinct elements of F.
- 28. If V is a real or complex vector space with an inner product (|), then for any α, β in V, prove that (a) $(\alpha \mid \beta) = 0$, $\forall \beta \in V \Rightarrow \alpha = 0$.

(b)
$$|(\alpha \mid \beta)| \le ||\alpha|| \ ||\beta||$$
, and (c) $||\alpha + \beta||^2 + ||\alpha - \beta||^2 = 2||\alpha||^2 + 2||\beta||^2$

 $(2 \times 4 = 8 \text{ weightage})$

M1	N1	7330

(Pages	21
1 Page	1
11 azco	4

Reg.	No:	 					•	17.0	•							

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Degree Examination, November 2017 MT1C03- Real Analysis - I

(2017 Admission onwards)

lax. Time: 3 hours

Max. Weightage: 36

Part A Answer all Questions Each question has 1 weightage.

- 1. Write down a set with exactly five limit points.
- 2. Show that Intervals are connected subsets of R.
- 3. True or false? Justify: Subsets of compact sets are compact.
- 4. Show that every neighborhood is an open set.
- 5. Define the continuity of a function. If f and g are continuous at a point p show that f + g is continuous at p.
- 6. Let f be a continuous mapping of a metric space X to a metric space Y and E be a subset of X. Show that $f(\overline{E}) \subset \overline{f(E)}$
- 7. Give an example of a continuous and unbounded function on (0,1) and a bounded continuous function on \mathcal{R}
- 8. If f is differentiable at a point x, show that it is continuous at x.
- 9. Give an example to show that mean Value Theorem is not true for complex valued functions.
- 10. Suppose f is differentiable in (a,b) and $f'(x) \ge 0$ for all x in (a,b). Show that f is monotonically increasing.
- 11. Let f be defined on \mathcal{R} and suppose that $|f(x) f(y)| \le (x y)^2$ for all $x, y \in \mathcal{R}$. Show that f is a constant.
- 12. If f is Reimann integrable over [a,b], then show that |f| is Reimann integrable over [a,b]..
- 13. Let γ be defined on [0,1] by $\gamma(t) = (\cos 2\pi t, \sin 2\pi t)$. Show that γ is rectifiable and find its length.
- 14. Give an example of convergent sequence of functions which is not uniformly convergent.

Part B Answer any seven Questions Each question has 2 weightage.

- 15. Show that every k-cell is compact.
- 16. Define a perfect set. Show that any nonempty perfect set is uncountable.
- 17. Let f be a continuous mapping of a compact metric space X to a metric space Y. Show that f is uniformly continuous.
- 18. Show that a monotonic function cannot have a discontinuity of second kind.
- 19. State and prove Chain rule for differentiation...
- 20. If f is continuous mapping of [a, b] into \mathscr{R} and if f is differentiable in (a, b), show that there is some x in (a, b) such that $|f(b) f(a)| \le (b-a)|f'(x)|$
- 21. Suppose f is Monotonic and α increasing and continuous on [a, b]. Show that $f \in \mathcal{R}(\alpha)$ on [a, b]
- 22. State and prove fundamental theorem of calculus. Deduce integration by parts.
- 23. Prove or disprove: If $\{f_n\}$ is a sequence which converge to f on [a,b]. Then $\int_a^b f_n$ converg to $\int_a^b f$.
- 24. Show that the uniform limit of a sequence of continuous functions is continuous.

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any two questions Each question carries 4 weightage.

- 25. a) Let $E \subset \mathcal{R}^k$. Show that the following are equivalent.
 - i. E is closed and bounded
 - ii. E is compact
 - iii. Every infinite subset of E has a limit point.
 - b) Prove or disprove: the closure and interior of connected sets are connected.
- 26. a) Discuss the continuity of the function defined by,

$$f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0, & \text{if } x \text{ is irrational.} \end{cases}$$

- b) State and prove L'Hospital's rule
- 27. a)Let f be differentiable on [a, b]. Show that f' can not have discontinuity of first kind f' b)If P_1 and P_2 are partitions of [a,b], P_2 is a refinement of P_1 and f a bounded function on [a,b]. Then show that $U(P_2, f, \alpha) \leq U(P_1, f, \alpha)$
- 28. a) Show that there exist a real continuous function which is nowhere differentiable.
 - b) Define an equicontinuous family of functions. Give an infinite equicontinuous family of functions.

 $(2 \times 4 = 8 \text{ weightag})$

Reg. No:....

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Degree Examination, November 2017

MT1C04- Number Theory

(2017 Admission onwards)

Time: 3 hours

Max. Weightage: 36

Part A (Answer all questions.)

Prove that $\varphi(n)$ is even for $n \ge 3$.

Prove that the Mobius function is multiplicative but not completely multiplicative.

Prove that $\prod_{t/n} t = n^{\frac{d(n)}{2}}$, where d(n) denotes the number of divisors of n.

 $\forall n \geq 1$, prove that $\sigma_{\alpha}^{-1}(n) = \sum_{d/n} d^{\alpha} \mu(d) \mu\left(\frac{n}{d}\right)$.

For any arithmetical functions α and β and for any real or complex valued function F on $(0,\infty)$ such that F(x)=0 for 0< x<1, prove that $\alpha\circ(\beta\circ F)=(\alpha*\beta)\circ F$.

Prove that $\forall x \ge 1, \sum_{n \le x} \Lambda(n) \left[\frac{x}{n} \right] = \log([x]!).$

 $\forall x \ge 2$, prove that $\vartheta(x) = \pi(x) \log x - \int_2^x \frac{\pi(t)}{t} dt$.

. Find the quadratic residues and non residues modulo 17.

- . Determine whether 888 is a quadratic residue modulo 1999.
- 0. Prove that if P is an odd integer, then prove that $(-1|P) = (-1)^{\frac{P-1}{2}}$.
- 1. Describe about shift cryptosystem and find a formula for the number of different shift transformations with an *N*-letter alphabet.
- 2. Find the cipher text corresponding to the text 'FRIDAYMORNING'in the affine cryptosystem with 26 letter alphabet system and enciphering key (7,3).
- 3. Write a short note on frequency analysis in cryptography.
- 4. Find the inverse of the matrix $\begin{bmatrix} 2 & 3 \\ 7 & 8 \end{bmatrix}$ (mod 26).

 $(14 \times 1 = 14 \text{ weightage})$

Part B

(Answer any 7 questions)

- 15. Prove that $\forall n \geq 1, \varphi(n) = n \prod_{p/n} \left(1 \frac{1}{p}\right)$.
- 16. If f is a multiplicative arithmetical function and $f^{-1}(n) = \mu(n)f(n)$, $\forall n \ge 1$, then prove that f is completely multiplicative.
- 17. State and prove Selberg Identity.
- 18. Prove that for all ≥ 2 , $\sum_{n \leq x} \frac{\log n}{n} = \frac{1}{2} \log^2 x + A + o\left(\frac{\log x}{x}\right)$, where A is a constant.
- 19. For x > 0, prove that $0 \le \frac{\psi(x)}{x} \frac{\vartheta(x)}{x} \le \frac{(\log x)^2}{2\sqrt{x}\log 2}$ and hence deduce $\lim_{x \to \infty} \frac{\psi(x)}{x} = \lim_{x \to \infty} \frac{\vartheta(x)}{x}$.
- 20. Prove that $\lim_{x\to\infty} \left(\frac{M(x)}{x} \frac{H(x)}{x \log x} \right) = 0$.
- 21. State and prove Gauss' lemma.
- 22. Determine the odd primes p for which 3 is a quadratic residue and those for which 3 is a quadratic non residue.
- 23. Solve the system of simultaneous congruences

$$x + 3y \equiv 1 \pmod{26}$$

$$7x + y \equiv 1 \pmod{26}.$$

24. Compare private key cryptosystem with Public key cryptosystem.

 $(7 \times 2 = 14 \text{ weightage})$

Part C (Answer any 2 questions)

- 25. Prove that if both g and f * g are multiplicative then f is also multiplicative and hence show that the set of all multiplicative functions is a subgroup of the group of all arithmetical functions f with $f(1) \neq 0$.
- 26. If a and b are positive real numbers such that ab = x, then for any arithmetical functions f and g, prove that $\sum_{\substack{q,d\\qd \le x}} f(d)g(q) = \sum_{n \le a} f(n) G\left(\frac{x}{n}\right) + \sum_{n \le b} g(n) F\left(\frac{x}{n}\right) F(a)G(b)$ where $F(x) = \sum_{n \le x} f(n)$ and $G(x) = \sum_{n \le x} g(n)$.
- 27. Let $\{a(n)\}$ be a non negative sequence such that $\sum_{n \le x} a(n) \left[\frac{x}{n}\right] = x \log x + O(x)$, for all $x \ge 1$. Show that for all $x \ge 1(i) \sum_{n \le x} \frac{a(n)}{n} = \log x + O(1)$ (ii) There is a constant B > 0 such that $\sum_{n \le x} a(n) \le Bx$.
- 28. For every odd prime p, prove that $(2|p) = (-1)^{\frac{p-1}{2}} = \begin{cases} 1 & \text{if } p \equiv \pm 1 \pmod{8} \\ -1 & \text{if } p \equiv \pm 3 \pmod{8} \end{cases}$

 $(2 \times 4 = 8 \text{ weightage})$

Reg.	No	 				+					

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Degree Examination, November 2017

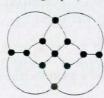
MT1C05- Discrete Mathematics (2017 Admission onwards)

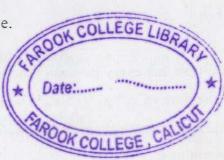
Max. Time: 3 hours

Max. Weightage: 36

PART A Answer all. I weightage each.

- 1. Let X be a set and let P(X) be its power set. Is the relation inclusion a total order on P(X)? Justify your answer.
- 2. Prove that in a lattice, every nonempty, finite subset has a supremum and infimum.
- 3. Prove that every nonzero element of a finite Boolean algebra contains at least one atom.
- 4. Prepare table values of the function $f(x_1, x_2, x_3) = x_1x_2 + x_2'x_3$.
- 5. Let G be a graph with n vertices and m edges. Assume that each vertex of G is of degree k or k+1. Show that the number of vertices of degree k in G is (k+1)n-2m.
- In a group of six people, prove that there must be three people who are mutually acquainted or three people who are mutually non-acquainted.
- 7. If $G_1[G_2]$ denote the lexicographic product of two simple graphs G_1 and G_2 , then prove that $m(G_1[G_2]) = n(G_1)m(G_2) + n(G_2)^2m(G_1)$.
- 8. Let G be a graph in which the degree of every vertex is at least 2. Then show that G contains a cycle.
- 9. Define connectivity and edge connectivity. Give an example.
- 0. Draw the dual of the given graph (Herschel graph)





- 1. Let u be string on the alphabet Σ . Prove that $|u^n| = n|u|$ for all n = 1, 2, ...
- 2. Define regular language and give an example of it.
- 3. Let $\Sigma = \{a, b\}$. Construct a dfa that accepts the language $\{aba, ba, ab\}$.
- 4. Show that if L is regular, then so is $L \{\lambda\}$.

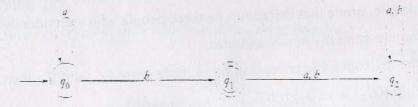
 $(14 \times 1 = 14 \text{ weightage})$

PART B Answer any seven. 2 Weightage each

- 15. Let X be a finite set and \leq be a partial order on X. R is abinary relation on X defined by xRy iff y covers x. Prove that \leq is the smallest order relation containing R.
- 16. Prove that every finite Boolean algebra is isomorphic to a power set Boolean algebra.
- 17. Write the Boolean function

$$f(x_1, x_2, x_3) = (x_1 + x_2 + x_3)(x_1' + x_2 + x_3')(x_1 + x_2' + x_3')(x_1' + x_2' + x_3')(x_1 + x_2'$$

- 18. Prove that, in a connected graph with at least three vertices, any two longest paths have a vertex in common.
- 19. Show that a simple cubic connected graph G has a cut vertex if, and only if, it has a cut edge.
- 20. Prove that every connected graph contains a spanning tree.
- 21. State and prove Euler's formula for a plane graph.
- 22. Find a grammar that generates the language $L = \{a^n b^{n+1} : n \ge 0\}$.
- 23. Find the language accepted by the dfa



24. Find regular expression for the language

COLLEGE LID

 $L = \{w \in \{0,1\}^*: w \text{ has at least one pair of consecutive zeros}\}$

 $(7 \times 2 = 14 \text{ weightage})$

PART C

Answer any Two. 4 Weightage each

- 25. (a) Prove that every Boolean function of n variables $x_1, x_2, ..., x_n$ can be uniquely expressed as the form of $x_1^{\varepsilon_1} x_2^{\varepsilon_2} ... x_n^{\varepsilon_n}$ where each $x_i^{\varepsilon_i}$ is x_i or x_i'
 - (b) Prove that the characteristic numbers of a symmetric Boolean function completely determine it.
- 26. (a) Show that for any loopless connected graph , $\kappa(G) \leq \lambda(G) \leq \delta(G)$.
 - (b) Prove that the connectivity and edge connectivity of a simple cubic graph are equal.
- 27. Prove that a connected graph G with at least two vertices is a tree if, and only if, its degree sequence $(d_1, d_2, ..., d_n)$ satisfies the condition $\sum_{i=1}^n d_i = 2(n-1)$ with $d_i > 0$.
- 28. (a) Let $M = (Q, \Sigma, \delta, q_0, F)$ be a dfa and let G_M be its associated transition graph. Then prove that for every $q_i, q_j \in Q$, and $w \in \Sigma^+, \delta^*(q_i, w) = q_j$ if, and only if, there is in G_M a walk with label w from q_i to q_j .
 - (b) Find a dfa that recognises the set of all strings on $\{a, b\}$ starting with prefix ab.

 $(2 \times 4 = 8 \text{ weightage})$