M1	NI	61	05
TATT	747	UL	00

(Pages :2)

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Degree Examination, November 2016 ST1C04 – Regression & Linear Programming

(2016 Admission onwards)

Max. Time: 3 hours

-Max. Weightage : 36

PART A

Answer all questions each carry one weight.

- 1. Define estimable parametric function.
- 2. State Gauss Markov theorem?
- 3. Explain a simple linear regression model.
- 4. How to detect and mitigate the problem of multicollinearity?
- 5. Explain logistic regression Model.
- 6. Define Hat matrix and state its properties.
- 7. Define feasible, basic feasible and optimum basic feasible solution of a LPP.
- 8. Briefly describe the graphical method of solving a LPP.
- 9. Explain the concept of duality and its uses in LPP.
- 10. Explain transportation problem.
- 11. Distinguish between sensitivity analysis and parametric programming.
- 12. Define a saddle point. Is it necessary that a game should always posses a saddle point?

(12 X 1=12)

PART B

Answer any eight. Each carries two weights.

- 13. Obtain 95% confidence interval for the predicted value in the simple linear regression model.
- 14. Explain various methods for checking adequacy of a model.
- Explain how you fit a polynomial regression model $Y=\beta_0+\beta_1X+\beta_2X^2+\varepsilon$ to a given data.
- 16. Explain various probability plots to examine the normality assumption in regression analysis.
- Explain the Poisson regression model and estimation of the parameters of this undel.
- 18. Lead to the predicted and studentized residual sum of squares.
- 19. Prove has basic feasible solution of the LPP is a vertex of the convex set of feasible solutions.

- Use two-phase simplex method to solve the following LPP: 20. Max $Z=3x_1-x_2$ subject to $2x_1+x_2 \ge 2$, $x_1+3x_2 \le 2$, $x_2 \le 4$, $x_1, x_2 \ge 0$.
- Briefly describe revised simplex method and its advantages over simplex 21. method.
- Write short notes on the following 22.
 - (i) Big- M method
 - (ii) Travelling salesman problem
- Explain the Maxmin and Minimax principle used in game theory. 23.
- For the following pay off matrix of firm A, determine the optimal strategies 24. for both the firms and the value of the game.

	Firm			
	15	2	3	
Firm B	6	5	7	

 $(8 \times 2 = 16)$

PART C

Answer any two. Each carries four weights.

- In the linear regression model $y = \alpha + \beta x + \epsilon$, obtain the best linear unbiased 25. estimators of a and B. Also obtain their standard errors. Whether these estimates coincide with the MLE?
- What is Generalized Linear Model (GLM)? Explain the parameter estimation 26. on GLM.
- Define assignment problem and discuss various methods for solving it. 27.
- ABC limited has three production shops supplying a product to five ware 28. houses. The cost of product varies from shop to shop and cost of transportation from one shop to a warehouse also varies. Each shop has a specific production capacity and each warehouse has certain amount of requirement. The cost of transportation is as given below.

			Ware	house			Capacity
		I	II	Ш	·IV	V	
	A	6	4	4.	7	5	100
Shop	В	5	6	7	4	8	125
	C	3	4.	. 6	3	4	175
Require	d	60	80	85	105	70	

Find the optimum quantity to be supplied from each shop to different warehouses at minimum total cost. $(2 \times 4 = 8)$

the asi flas Protect inasible solucion:

1	M	11	11	61	06
-8	40.0				

Reg. No:.... (Pages: 2)

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Degree Examination, November 2016 ST1C05 - Distribution Theory

(2016 Admission onwards)

Max. Time: 3 hours

Max. Weightage: 36

PART-A

Answer all Ouestions Each question carries a weightage of 1.

If X be a non negative random variable with distribution function F(.), then show that

$$E(X) = \int_0^\infty (1 - F(x)) dx$$

A random variable X has probability distribution

$$p_k = P(X = k) = \frac{\alpha q^k}{k}, k = 1, 2, ..., 0 < q < 1, \qquad \alpha = \frac{-1}{\log(1 - q)}$$

If X and Y are independently distributed random variables such that $X \sim B(n_1, p)$ and

 $Y \sim B(n_2, p)$ obtain the conditional distribution of X given X + Y

Hyper geometric

Let X₁, X₂, ..., X_n be a random sample of size 'n' taken from a population that follow Poisson distribution with mean λ . Derive the distribution of its sample mean.

- Derive the lack of memory property possessed by geometric distribution.
- If X has uniform distribution over (0, 1), derive the distribution of $Y = e^{x}$.

fy(s) = } , 1 = y <

If X and Y are independently and identically distributed exponential random variable

with mean $\frac{1}{\theta}$, identify the distribution of X – Y.

Laplace dias

- Derive the harmonic mean of X where X follows beta distribution of second type. $H(m) = \frac{\alpha 1}{C}$
- Let the bivariate random variable (X, Y) have joint probability density function

 $f(x, y) = kxy^2$, 0 < x < y < 2. Find the value of k?

- Show that in student's 't' distribution with 'n' degrees of freedom all odd and central moments are equal.
- 11. If F has snedecor's F distribution with degrees of freedom $n_1 = n_2 = n$. Then show that median of F occurs at F = 1
- 12. Define non central t distribution and when will this reduce to central t distribution

(12x1=12 weightage)

PART B

Answer eight Questions

Each question carries a weightage of 2.
13. Define probability generating function of a random variable. Let X_i , $i = 1,2,,n$ be a
sequence of independently and identically distributed random variables such that
$p(X_1 = k) = q^k p$ for $k = 0,1,2,3,$ and $i = 1,2,,n$. Derive the pgf of $Y = X_1 + X_2 +$
++2 + x and identify the distribution of y.
D. G. a hyper geometric distribution. Under conditions to be stated show that hyper
geometric distribution becomes binomial distribution.
15. Suppose that (X_1, X_2, X_3) is multinomial with constants (n, p_1, p_2, p_3) . Show that the
conditional distribution of X_1 given $X_1 + X_2$ is binomial
16. Define power series distribution. Derive its cumulant generating function and hence its
tlet 2 mean.
17. Let X_i , $i = 1,2,3,,n$ be a set of identically and independently distributed random
variables having Weibul distribution with probability density function $f(x) = cx^{-1}e^{-x}$
$x > 0$, $c > 0$. Derive the probability density function of Y where $Y = X_{(1)}$.
D. C. Broots distribution Obtain the expression for its rth raw moment and hence it
of the majores fig = dk1, xxk k+ = th, xxx vanished
10 If Y and Y are two independently distributed standard
the distribution of U where $U = \frac{x}{y}$.
20. Let X have a standard Cauchy distribution. Find the probability density function of
where $Y = X^2$ and identify the distribution.
21. The bivariate random variable (X, Y) has joint probability density function $f(x, y) = 6(1 - x - y)$
0 < y < 1 and $x + y < 1$. Find Cov (X, Y) ?
22. Let $X_1, X_2,, X_n$ be a random sample drawn from a population with uniform densi
function over $(0,1)$. Find the distribution of rth order statistic $X_{(r)}$ and hence its mean
$v_{r} \rightarrow v_{r} $ $v_{r} \rightarrow v_{r} $ $v_{r} \rightarrow v_{r} $ $v_{r} \rightarrow v_{r} $
23. Let X and Y be independently distributed according to Chi-square with parameters
and n_2 . Derive the distribution of $U = \frac{X}{X+Y}$. $B_1\left(\frac{n_1}{2}, \frac{n_2}{2}\right)$
24. Derive the mean and mode of F distribution and show that its mean is always greater the
222 mode mean = - 12 1 nate: - 12 1 n - 2
25. Derive the moment generating function of X where X follows non central chi squ
id an control ity parameter λ
distribution with non centrality parameter is The state of the state

ntzer

PART-C

Answer *two* Questions
Each question carries a weightage of 4.

Median = et Mode = et = e 1 - lognand (-1, 02)

Define lognormal distribution with constants μ and σ . Show that it is positively skewed. If X has lognormal distribution with constants μ and σ , then obtain the distribution of 1/X

- b) Let X have the conditional distribution given by $f(x/\theta) = \frac{1}{\theta}e^{-\frac{x}{\theta}}$, x > 0 and θ follows gamma distribution with parameters 'm' and 'n'. Obtain the unconditional distribution of X.
- a)If 't' has student's 't' distribution with 'n' degrees of freedom show that t² follows F distribution with one and 'n' degrees of freedom
- b) Derive the probability density function of non central student's 't' distribution
- Let $X_1, X_2, ..., X_n$ be a random sample drawn from $N(\mu, \sigma^2)$. Show that sample mean \overline{X} and sample variance s^2 are independently distributed. Hence or otherwise obtain their individual distributions.
- a)Define bivariate normal distribution. Let X and Y be independently distributed according to $N(\mu,\sigma^2)$. Define U=X+Y and V=X-Y. Examine whether U and V are independent.
- b)Derive the probability density function of Pearson type I distribution and hence illustrate how does it generalize the beta distribution of the first type.

 $(2 \times 4 = 8 \text{ Weightage})$

11N16104

(Pages: 2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Degree Examination, November 2016 ST1C03 – Analytical Tools for Statistics – II

(2016 Admission onwards)

ax. Time: 3 hours

Max. Weightage: 36

Part A

(Answer all questions. Weightage 1 for each question)

Define linear independence of a set of vectors.

Check whether $S = \{(x_1, x_2) \in \mathbb{R}^2 : x_1, x_2 \ge 0\}$ is a subspace of \mathbb{R}^2 .

Define basis of a vector space.

Define inner product of two vectors.

Define linear and orthogonal transformations.

Define triangular matrix. State any property of it.

What is singular value decomposition of a matrix?

Show that the modulus of each characteristic root of a unitary matrix is one.

Define indefinite quadratic forms.

- . Show that a real symmetric matrix has only real eigen values.
- State spectral decomposition theorem for a real symmetric matrix.
- . If A is symmetric matrix then show that Moore-Penrose inverse of A is orthogonal.

 $(12 \times 1 = 12)$

Part B

(Answer any eight questions. Weightage 2 for each question)

- Let S be a subspace of a finite dimensional vector space. Prove that every generating set C of S contains a basis of S.
- Prove that the intersection of any two subspaces S and T of a vector space V is a subspace of V.
- Define rank of a matrix. If r(A) is the rank of A, then show that
- (i) $r(AB) \le min[r(A), r(B)]$. (ii) r(AB) = r(A) if B is a square and nonsingular matrix.
- Show that a matrix is a projection matrix if and only if it is symmetric and idempotent.
- Define Hermitian and skew Hermitian matrices. Show that eigen values of Hermitian matrix are real

- 18. Define minimal polynomial. Prove that similar matrices have the same minimal polynomial.
- 19. Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 8 & -4 & 6 \\ 10 & -6 & 6 \\ 8 & -8 & 10 \end{bmatrix}$
- 20. Prove that the geometric multiplicity of a characteristic root cannot exceed algebraic multiplicity of the same.
- 21. Define trace of a matrix. Show that for any $m \times n$ matrix A, $n \times p$ matrix B, and $p \times q$ matrix C, tr(ABC) = tr(B'A'C') = tr(A'C'B').
- 22. Classify the following quadratic form as positive definite, positive semi-definite or indefinite.

- $x_1^2 + 2x_2^2 x_3^2 4x_1x_2 6x_1x_3 + 8x_2x_3$. 23. Define the rank, signature and index of a real quadratic form. State the interrelationship between them, if any.
- 24. Show that original matrix is the generalized inverse of its generalized inverse. Explain a method of finding generalized inverse of a given square matrix.

 $(8 \times 2 = 16)$

Part C

(Answer any two questions. Weightage 4 for each question)

- 25. If A and B are two m x m idempotent matrix, then show that
 - (a) I_m -- A is idempotent
 - (b) Each eigen values of A is 0 or 1.
 - (c) A+B is idempotent if and only if AB=BA= O
 - (d) AB is idempotent if and only if AB=BA
- 26. Let $A_1, A_2, ..., A_n$ are symmetric matrices. If $\sum_{i=1}^n A_i$ is idempotent and $A_i A_i = O$ for $i \neq j$. Then show that A_i is idempotent and rank $(\sum_{i=1}^n A_i) = \sum_{i=1}^n rank(A_i)$.
- 27. Let A represent an $m \times n$ nonnull matrix, let B represent a matrix of full column rank and T a matrix of full row rank such that A = BT, and let L represent a left inverse of B and R a right inverse of T.
 - (a) Show that the matrix $R(B'B)^{-1}$ R' is a generalized inverse of the matrix A'A and that the matrix $L'(TT')^{-1}L$ is a generalized inverse of the matrix AA'.
 - (b) Show that if A is symmetric, then the matrix $R(TB)^{-1}$ L is a generalized inverse of the matrix A^2 .
- 28. (a) Define Moore-Penrose inverse of matrix and describe its properties.
 - (b) Show that Moore-Penrose inverse of matrix is unique.

 $(2 \times 4 = 8)$

(Pages · 2)

)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Degree Examination, November 2016 ST1C02 – Analytical Tools for Statistics – I

(2016 Admission onwards)

Time: 3 hours

Max. Weightage: 36

Part A

(Answer ALL questions. Weightage 1 for each question)

- Examine whether the limit of the function $f(x,y) = \frac{x^2y^2}{x^3+y^3}$ exists at the point (0,0).
- 2. State implicit function theorem.
- 3. Define directional derivative.
- 4. Define the limit of a multivariate function.
- 5. Define analytic function. Give an example.
- 6. State Cauchy's theorem for analytic function.
- 7. Examine whether $e^x \cos y$ is a harmonic function.
- 8. Define Pole and singularities of a function.
- 9. Define Laplace transform of a function.
- 10. State Poisson integral formula.
- 11. Obtain the Laplace transform of the function e^{at} .
- 12. If L(F(t)) = f(s) then what is $L(e^{at} F(t))$.

 $(12 \times 1 = 12)$

Part B

(Answer any EIGHT questions. Weightage 2 for each question)

- 13. Examine whether the limit of the function $f(x,y) = \frac{x^3y^3}{x^2+y^2}$ exist at (0,0).
- 14. Show that the function $f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{; if } (x,y) \neq (0,0) \\ 0 & \text{; if } (x,y) = (0,0) \end{cases}$

is continuous at the origin.

- 15. Examine the function $21x 12x^2 2y^2 + x^3 + xy^2$ for maximum and minimum.
- 16. Find an analytic function whose real part is $e^x \cos y$.
- 17. State and prove Cauchy's integral formula.
- 18. Show that every analytic function satisfies Cauchy-Riemann equations.
- 19. State and prove Jordan's lemma.

- 20. Classify the nature and singularity of the function $f(z) = \frac{z^2}{(z-2)^2}$ and find the residue a the singular point.
- 21. Show that if f(z) is an entire function, which is bounded for all values of z, then it is constant.
- 22. If L(F(t)) = f(s) show that $L\{t^n F(t)\} = (-1)^n \frac{d^n}{ds^n} f(s)$ where L represents the Laplace transform.
- 23. Find the Fourier transform of F(x) = x if $a \le x \le b$.
- 24. Integrate $\frac{1}{z^4-1}$ around the circle |z+3| = 1.

 $(8 \times 2 = 1)$

Part C

(Answer any TWO questions. Weightage 4 for each question)

- 25. i) State and prove Laurent's lemma.
 - ii) Derive the Laurent's series expansion of f(z), where

$$f(z) = \frac{2}{(z-1)(z-3)}, 0 < |z-1| < 2.$$

- 26. State and prove the necessary and sufficient condition for a function to be analytic.
- 27. Evaluate

1.
$$\int_0^\infty \frac{x^2}{x^4 + 5x^2 + 6} dx$$

2.
$$\int_{-\infty}^{\infty} \frac{1}{(x^2+1)(x^2+9)} dx$$

- 28. i. Explain the Lagrange multiplier method.
 - ii. Maximize $36-x^2-y^2$ subject to x+7y=25.

 $(2 \times 4 =$

(Pages: 2)

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Degree Examination, November 2016 ST1C01 – Measure theory & integration

(2016 Admission onwards)

Time: 3 hours

Max. Weightage: 36

PART A

(Answer All questions. Weightage 1 for each question.)

Define Reimann - Stieltje's integral.

Describe uniform convergence of a sequence of functions.

Identify conditions under which the following equality holds for a sequence of

functions $\{f_n\}$: $\lim_{n\to\infty} \lim_{x\to c} f_n(x) = \lim_{x\to c} \lim_{n\to\infty} f_n(x)$.

Prove or disprove: "Union of two fields is again a field".

If f and g are measurable functions, prove that max(f, g) is also a measurable function.

Distinguish between finite and σ -finite measures.

Let (X,F,μ) be a measurable space and $A \in F$. If $f(x) = I_A(x)$, for all $x \in X$,

find $\int_{\mathcal{L}} f d\mu$.

State Lebesgue dominated convergence theorem.

What you mean by Lp space?

Describe L_p convergence.

Define product measure.

State Fubini's theorem and describe its significance.

 $(12 \times 1 = 12)$

PART B

(Answer any EIGHT questions. Weightage 2 for each question.)

If $f \in R(\alpha)$ and $f \in R(\beta)$ on [a,b], for any constants c_1 , c_2 , prove that

$$f \in R(c_1\alpha + c_2\beta)$$
 and $\int_a^b fd(c_1\alpha + c_2\beta) = c_1\int_a^b fd\alpha + c_2\int_a^b fd\beta$.

Suppose α is increasing on [a, b] and $f \in R(\alpha)$, prove that $f^2 \in R(\alpha)$ on [a, b].

State and prove fundamental theorem of calculus.

Define minimal σ -field over a given class of sets. Describe how do you construct Borel's σ -field in R, beginning with a class of subsets of R.

- 17. Beginning with the integral of simple functions, describe the systematic development of integral of arbitrary measurable functions.
- 18. State and prove monotone convergence theorem.
- 19. Let $\{f_n\}$ be almost uniformly Cauchy sequence, prove that there exists a measurable function f such that $\{f_n\}$ converges almost uniformly and almost every where to f.
- 20. If $\{f_n\}$ converges almost uniformly, prove that $\{f_n\}$ converges in measure. Is the converse true? Justify your answer.
- 21. State and prove Egoroff's theorem.
- 22. State and prove Jordan decomposition theorem
- 23. State Radon Nikodym theorem. What is Radon Nikodym derivative? What are the properties of Radon Nikodym derivative.
- 24. Define Lebesgue Stieltje's measure. Derive probability measure as its particular case.

 $(8 \times 2 =$

PART C

(Answer any TWO questions. Weightage 4 for each question.)

- 25. State and prove Weierstrass theorem.
- 26. (a) Let f be an arbitrary measurable function. Define the positive and negative part of f. Prove that positive and negative part of f are measurable functions.
 - (b) If f and g are measurable functions on (X, A, μ) , prove that:

$$\int_X (f+g)d\mu = \int_X f d\mu + \int_X g d\mu$$

27. (a) Define convergence in measure.

If
$$f_n \to^m f$$
 and $g_n \to^m g$, prove that $f_n + g_n \to^m f + g$

- (b) State and prove Holders inequality.
- 28. (a) State Caratheodory extension theorem.
 - (b) Find the Lebesgue Stieltje's measure generated by the following function g, who

$$g(x) = 0, x < 0; g(x) = \frac{1}{4}, 0 \le 1; \ g(x) = \frac{1}{2}, 1 \le x < 2; \ and \ g(x) = 1, x \ge 2.$$