4	B3N17085	•
- 1	ISSNI /IIXS	
- 3	DOLLITION	200

(Pages: 2)	Reg. No:
	3.1

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester BSc Degree Examination, November 2017 MAT3B03 - Calculus and Analytic Geometry

(2016 Admission onwards)

Max. Time: 3 hours

Max. Marks: 80

PART-A

Answer all Questions . Each question carries one mark

- 1. The derivative of $\ln (3x)$ is
- 2. Define the hyperbolic cosine function of x.
- 3. Find the derivative of $y = 6 \sin h \left(\frac{x}{2}\right)$
- 4. Write the nth term of the sequence 0,1,1,2,2,....
- 5. Evaluate the limit of the sequence $(\sqrt{\frac{n+1}{n}})$
- 6. Evaluate $\lim_{n \to \infty} (n^{\frac{2}{n}})$
- 7. For what values of p, does the series $\sum_{n=1}^{p} \frac{1}{n^p}$ converge?
- 8. Find the focus of the parabola $y^2 = 10x$
- 9. Using discriminant test identify the conic section $x^2 + 2xy + y^2 + 2x y + 1 = 0$
- 10. Write a parametric equation of the circle $x^2 + y^2 = 9$
- 11. Graph the polar region $-3 \le r \le 2$, $\theta = \frac{\pi}{4}$
- 12. Replace the polar equation $\frac{4}{2\cos\theta-\sin\theta}$ by the corresponding Cartesian equation.

(12x1=12 marks)

PART-B

Answer any nine questions. Each question carries two marks

- 13. Solve for x: $e^{2x-6} = 4$
- 14. Prove: $\cos h^2 x \sinh^2 x = 1$
- 15. Evaluate $\int_0^{1/3} \frac{6 \, dx}{\sqrt{1+9x^2}}$
- 16. Use sandwich theorem to find the limit of the sequence $\left(\frac{\cos n}{n}\right)$
- 17. Prove that $\lim_{n\to\infty} k = k$
- 18. Evaluate $\lim_{x\to 0} \frac{3x-\sin x}{x}$
- 19. Check the convergence of the series $\sum_{n=1}^{\infty} \frac{2n}{n^2 n + 1}$
- 20. Express the repeating decimal $\overline{0.234} = 0.234234234$... as the ratio of two integers.
- 21. Find the foci and vertices of the parabola $\frac{x^2}{9} + \frac{y^2}{16} = 1$

22. The position P(x, y) of a moving particle in the xy-plane is given by the equations and parametric interval,

$$x = \sqrt{t}, y = t, t \ge 0.$$

Identify the path traced by the particle and describe the motion.

- 23. Find all polar coordinates of the point $P(2, \frac{\pi}{6})$
- 24. Find the length of the cardioid $r = 1 + \cos \theta$

(9x2=18 marks)

PART-C

Answer any six questions. Each question carry five marks

- 25. Prove that $\tan h^{-1} x = \frac{1}{2} \ln \frac{1+x}{1-x}$, |x| < 1
- 26. Check the convergence of the series $\frac{3}{4} + \frac{5}{9} + \frac{7}{16} + \frac{9}{25} + \cdots$
- 27. Check the convergence of $\sum_{n=1}^{\infty} \frac{n2^n(n+1)}{3^n n!}$
- 28. Find the interval of convergence of the power series $\sum_{n=0}^{\infty} \left(-\frac{1}{2}\right)^n (x-2)^n$. What is the sum?
- 29. Find the Taylor series and Taylor polynomial generated by $f(x) = \cos x$ at x = 0.
- 30. Find the standard equation of a conic section hence find the center, foci, vertices, asymptotes as appropriate $y^2 4y 8x 12 = 0$
- 31. Find the tangent to the right hand hyperbola branch $x = \sec t, y = \tan t, -\frac{\pi}{2} < t < \frac{\pi}{2}$ at the point $(\sqrt{2}, 1)$, where $t = \frac{\pi}{4}$
- 32. Find the length of the parametric curve, $x = \cos t$, $y = t + \sin t$, $0 \le t \le \pi$
- 33. Find the area inside the smaller loop of the limacon, $r = 2\cos\theta + 1$

(6x5=30 marks)

PART-D

Answer any two questions. Each question carries ten marks

34.

- a) Graph the polar curve $r = 1 + \cos \frac{\theta}{2}$
- b) Find the slope of the curve $r = -1 + \cos \theta$ at $\theta = \frac{\pi}{2}$

35.

- a) Show that the series $\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$ is absolutely convergent.
- b) Show that the Alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is conditionally convergent.

36.

- a) Remove the cross product term in the equation and identify the curve: $2x^2 + \sqrt{3}xy + y^2 10 = 0$. Sketch the graph.
- b) Evaluate $\lim_{x\to\infty} x^{\frac{1}{x}}$

 $(2 \times 10 = 20 \text{ Marks})$

	1	R3	N1	71	086	
--	---	----	----	----	-----	--

(Pages: 2)

Reg. No:....

Name: .

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester BSc Degree Examination, November 2017 MAT3C03 - Mathematics

(2016 Admission onwards)

Max. Time: 3 hours

Max. Marks: 80

PART A

Answer all questions. Each question carries one mark.

- 1. Solve y' = -2xy..
- 2. Show that the equation $(1 + 4xy + 2y^2)dx + (1 + 4xy + 2x^2)dy = 0$ is exact.
- 3. Verify that $x^4 + y^4 = 1$ is a solution of $x^3 + y^3y' = 0$.
- 4. Find the rank of the matrix $\begin{bmatrix} 5 & 1 \\ 2 & 3 \\ 7 & 4 \end{bmatrix}$.
- 5. Find the eigenvalues of the matrix $\begin{bmatrix} 2 & 9 & 2 \\ 0 & -7 & 1 \\ 0 & 0 & 6 \end{bmatrix}$.
- 6. Is the matrix $\begin{bmatrix} 14 & 4 \\ 7 & 2 \end{bmatrix}$ a singular matrix? Give reason.
- 7. If $\vec{a} = [2,5,8]$, then find $\vec{a} \cdot \vec{a}$ and $\vec{a} + \vec{a}$.
- 8. Define a unit vector and give an example.
- 9. Find a unit vector in the direction of the vector from P(0,1,-1) to Q(-1,2,2).
- 10. Sketch the unit vector obtained by rotating the unit vector \hat{j} anticlockwise $\frac{\pi}{2}$ rad about the origin.
- 11. If $\phi(x, y, z) = 3x^2 + 4y^3 + xyz$, then find $\nabla \phi$ at (1,1,1).
- 12. The vector $\vec{r}(t) = 4\cos t \,\hat{\imath} + 4\sin t \,\hat{\jmath} + t\hat{k}$ gives the position of a moving body at time t. Find the velocity of the body when t = 4.

 $(12 \times 1 = 12 \text{ marks})$

PART B

Answer any nine questions. Each question has two marks.

- 13. Define singular solution of a differential equation. Give an example, and explain.
- 14. Find the curve through the point (1,1) in the xy -plane having at each points the slope $-\frac{y}{x}$.
- 15. Find an integrating factor of $(y 2x^3)dx x(1 xy)dy = 0$ and solve it.
- 16. Find the rank of the matrix A by reducing in to row canonical form, where $A = \begin{bmatrix} 2 & 4 & 6 \\ 3 & 1 & 0 \\ 1 & -3 & -6 \\ 5 & 5 & 6 \end{bmatrix}$.

 17. Find the rank of the matrix A by reducing in to normal form, where $A = \begin{bmatrix} 12 & 24 & 36 & 72 \\ 14 & 22 & 36 & 2 \\ 2 & -2 & 0 & -70 \end{bmatrix}$.
- 18. Using Cayley-Hamilton theorem find A^{-1} , where $A = \begin{bmatrix} 2 & 0 \\ 3 & 4 \end{bmatrix}$.
- 19. Find first and second partial derivatives with respect to x of vector function $[x^2y, y^2z, z^2x]$.
- 20. Find the unit tangent vector of the curve $\vec{r}(t) = \sqrt{2} \cos t \,\hat{\imath} + \sqrt{2} \sin t \,\hat{\jmath} + \sqrt{3} \hat{k}$ at the point $(\sqrt{2}, 0, \sqrt{3})$.

- 21. Show that $\vec{u}(t) = \sin t \hat{\imath} + \cos t \hat{\jmath} + \sqrt{7}\hat{k}$ is orthogonal to its derivative.
- 22. Find the directional derivative of the function $f(x, y) = \frac{x^2}{2} + \frac{y^2}{2}$ at (1,1) in the direction of the vector $\vec{u} = \hat{\imath} \hat{\jmath}$.
- 23. Find the length of one turn of the helix $\vec{r}(t) = \cos t \hat{i} + \sin t \hat{j} + t \hat{k}$.
- 24. Find the curl of $\overrightarrow{F} = x^2yz\hat{\imath} + xy^2z\hat{\jmath} + xyz^2\hat{k}$ at (-1, -1, -1).

 $(9 \times 2 = 18 \text{ marks})$

PART C

Answer any six questions. Each question has five marks.

- 25. Experiments show that a radioactive substance at a rate proportional to the amount present. Starting with 2 grams of substance at time t = 0, what can be said about the amount available at a later time.
- 26. Solve $xy' + y = xy^3$.
- 27. Find the orthogonal trajectories of the family of circles $x^2 + (y c)^2 = c^2$.
- 28. Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.
- 29. For what values of α does the system of equations

$$x + 2y + z = 2$$
$$3x + y - 2z = 1$$
$$4x - 3y - z = 3$$
$$2x + 4y + 2z = \alpha$$

has a solution? Find the general solution when α takes this value.

- 30. If \vec{v} is a differentiable vector function, then prove that div(curl v) = 0.
- 31. Find the total work done in moving a particle in a force field given by $\vec{F} = 3xy \hat{\imath} 5z \hat{\jmath} + 10x \hat{k}$ along the curve $x = t^2 + 1$, $y = 2t^2$, $z = t^3$ from t = 0 to t = 2.
- 32. Calculate $\iint_R f(x,y)dx dy$ for $f(x,y) = 1 6x^2y$ and $R: 0 \le x \le 2$; $0 \le y \le 1$.
- 33. If $\vec{A} = 2xy \hat{\imath} + yz^2 \hat{\jmath} + xz \hat{k}$ and S is a rectangular parallelepiped bounded by x = 0, y = 0, z = 0; x = 1, y = 2, z = 3, then evaluate $\iint_S \vec{A} \cdot n \, dA$.

 $(6 \times 5 = 30 \text{ marks})$

PARTD

Answer any two questions. Each question has ten marks.

- 34. Verify that the eigenvalues of the matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ and A^T are the same.
- 35. Verify Gauss's divergence theorem for $\vec{F} = (x^2 yz)\hat{\imath} + (y^2 zx)\hat{\jmath} + (z^2 xy)\hat{k}$ over the rectangular parallelepiped $0 \le x \le 2$; $0 \le y \le 21$; $0 \le z \le 2$.
- 36. Verify Stoke's theorem for the function $\vec{F} = x^2\hat{\imath} + xy\hat{\jmath}$ integrated around the square in the plane z = 0 whose sides are along the lines x = 0, y = 0, x = 2, y = 2.

 $(2 \times 10 = 20 \text{ marks})$