B ₂ M	17200

(Pages:2)

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester B.Sc Mathematics Degree Examination, March 2017 MAT2B02 - Calculus

(2016 Admission onwards)

Max. Time: 3 hours

3)

rks)

Max. Marks: 80

PART-A

(Answer all questions. Each question carries one mark)

When a function f is said to have a local maximum value at an interior point c of its domain?

Why Rolle's theorem is not applicable for f(x) = |x| in the interval [-1, 1]?

Give an example of a curve which is concave up on every interval.

$$\lim_{x\to\infty} \left(\frac{2}{x} - 3\right) = \cdots$$

Find dy if $y = x^7 + 100x$.

Write a partition of the closed bounded interval [0, 2] having norm 0.3.

The average value of f(x) = x on [0, 2] is....

State the Mean Value Theorem for definite integrals.

If
$$y = \int_0^x \sqrt{1 + t^2} dt$$
, then $\frac{dy}{dx} = \cdots$

0. Suppose $\int_0^1 f(x) dx = 3$, then find $\int_{-1}^0 f(x) dx$ if f(x) is even.

1. When a function is said to be smooth?

2. The work done by a variable force F(x) directed along the x-axis from x = a to x = b is given by.....

 $(12 \times 1 = 12 \text{ Marks})$

PART-B

(Answer any seven questions. Each question carries two marks)

- 3. Find the function f(x) whose derivative is $\sin x$ and whose graph passes through the point (0,2).
- 4. Find the asymptotes of the curve $y = \frac{x+3}{x+2}$.
- 5. Find the linearization of $f(x) = \sqrt{1+x}$ at x = 0.
- arks) 6. When a function f is said to be Riemann integrable over [a, b]?
 - 7. Show that the value of $\int_0^1 \sqrt{1 + \cos x} \, dx$ cannot possibly be 2.
 - 8. Evaluate $\int_0^{\frac{\pi}{4}} \tan x \sec^2 x \, dx$
 - 9. The region between the curve $y = \sqrt{x}$, $0 \le x \le 4$, and the x-axis is revolved about the x-axis to generate a solid. Find its volume.
 - 0. Find the length of the arc of the curve $y = \frac{x}{2}$, $2 \le x \le 6$.
 - 1. Find the work W done by the force of $F(x) = \frac{1}{x^2}N$ directed along the x-axis from x = 1m to x = 10m.

 $(7 \times 2 = 14 \text{ Marks})$

PART-C

(Answer any six questions. Each question carries five marks)

- 22. If f has a local maximum or minimum value at an interior point c of its domain, and if f is defined at c, then prove that f'(c) = 0.
- 23. Prove that the curve $y = \frac{x}{1+x^2}$ has three points of inflection and they are collinear.
- 24. Determine the smallest perimeter possible for a rectangle whose area is 16 square units.
- 25. Using limits of Riemann sums, prove that $\int_0^b x dx = \frac{b^2}{2}$
- 26. Find the average value of $f(x) = 4 x^2$ on [0, 3]. Does f actually take on this value a some point in the given domain?
- 27. Sketch region enclosed by the parabola $y = 2 x^2$ and the line y = -x. Also find th area of the region enclosed by the curves.
- 28. Find the volume of the solid generated by the revolution about the x-axis of the loop of the curve $y^2 = x^2 \left(\frac{3a-x}{a+x} \right)$.
- 29. Find the centre of mass of a wire of constant density δ shaped like a semicircle of radiu a.

 $(6 \times 5 = 30 \text{ Marks})$

PART-D

(Answer any three questions. Each question carries eight marks)

- 30. Using the algorithm for graphing, graph the function $y = x^4 2x^2$. Include the coordinates of any local extreme points and inflection points.
- 31. The cost function at a soft drink company is $c(x) = x^3 6x^2 + 15x$ (x in thousands of units). Is there a production level that minimizes average cost? If so, what is it?
- 32. a) Find $\frac{dy}{dx}$ if $y = \int_0^{\sqrt{x}} \cos t \, dt$
 - b) Find the area of the region between the x-axis and the graph of

$$f(x) = x^3 - x^2 - 2x, -1 \le x \le 2.$$

- Prove that the length s of the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ measured from (0, a) to the point (x, y) is given by $s = \frac{3}{2} (ax^2)^{\frac{1}{3}}$. Also find the entire length.
- 34. Find the area of the surface generated by revolving the curve $y = x^3$, $0 \le x \le \frac{1}{2}$ about the x-axis.

 $(3 \times 8 = 24 \text{ Mark})$

21

2B2M1	7201
加里 加工下从从	, , , , ,

(Pages: 2)

Reg. No:

Name:

ZDZIIZZ / Z v .

- 1

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester B.Sc Degree Examination, March 2017

MAT2C02 - Mathematics

(2016 Admission onwards)

Max. Time: 3 hours

Max. Marks: 80

at

the

of

ius

ks)

the

of

, y)

the

ks)

PART-A

Answer all the TWELVE questions Each question carries ONE mark

- 1. Write the formula $\cosh(2x)$ in terms of $\sinh(x)$ and $\cosh(x)$.
- 2. Express $sinh^{-1}(x)$ in terms of natural logarithms.
- 3. State the limit comparison test for the convergence of an improper integral.
- 4. Write the nth term test for the convergence of a series.
- 5. What is the value of $\lim_{n\to\infty} n^{1/n}$.
- 6. What is the condition on r so that the geometric series $\sum_{n=1}^{\infty} ar^{n-1} = a+ar+ar^2+...$ to Converges?
- 7. Define absolute convergence of a series.
- 8. Roughly graph the set of points whose polar coordinates satisfy $1 \le r \le 2$ and $0 \le \theta \le \frac{\pi}{2}$.
- 9. Give the polar equation of the circle through the origin, cantered on the x-axis at (a,0).
- 10. Write the cylindrical coordinate of the point (0, 1, 0) in rectangular system.
- 11. Define the continuity of the function f(x,y) at the point (x_0,y_0) .
- 12. Find $\frac{\partial f}{\partial x}$ if $f(x, y) = e^{xy}$.

 $(12 \times 1 = 12 \text{ Marks})$

PART-B

Answer any **SEVEN** questions Each question carries **TWO** marks.

- 13. Evaluate the integral $\int_0^1 \sinh^2(x)$.
- 14. Is the area under the curve $y = \frac{1}{\sqrt{x}}$ from x = 0 to x = 1 finite. If so what is it?
- 15. Using Sandwich theorem show that the sequence $\left\{\frac{1}{2^n}\right\}$ converges to zero.
- 16. Show that the series $\sum_{n=1}^{\infty} \frac{n}{2n+5}$ diverges.
- 17. Check the convergence of the alternating series $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots$
- 18. Find the Cartesian equation corresponding to the polar equation $r^2 = 4r \cos\theta$.
- 19. Find an equation for the hyperbola with eccentricity $\frac{3}{2}$ and directrix x = 2.
- 20. Find the linearization of $f(x,y,z) = x^2 + y^2 + z^2$ at the point (1,1,1,).
- 21. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ if $f(x,y) = x^y$

 $(7 \times 2 = 14 \text{ Marks})$

PART-C

Answer any SIX questions

Each question carries FIVE marks

- 22. Find the volume of the solid generated by revolving the region between the paral $x = y^2 + 1$ and the line x = 3 about the line x = 3.
- 23. Find the length of the curve $y = \frac{(x^2+2)^{\frac{3}{2}}}{3}$ from x = 0 to x = 3.
- 24. Test the convergence of the series $\sum_{n=0}^{\infty} \frac{n^3+1}{2^n+1}$.
- 25. Test for the convergence of the series $\sum a_n$ if $a_n = (\sqrt[n]{n} 1)^n$.
- 26. Find the area of the region shared by the circle r = 2 and the cardioids $r = 2(1-\cos\theta)$
- 27. Find the area of the surface generated by revolving the right-hand loop of the lemniscates $r^2 = \cos(2\theta)$, from $-\frac{\pi}{4}$ to $\frac{\pi}{4}$, about the x-axis.
- 28. Show that the function $f(x,y) = \frac{x^4}{x^4 + y^2}$ has no limit as $(x,y) \to (0,0)$.
- 29. Find $\frac{dw}{dt}$ if w = xy + z, $x = \cos t$, $y = \sin t$, z = t.

 $(6 \times 5 = 30 \text{ M})$

PART-D

Answer any THREE questions
Each question carries EIGHT marks

- 30. a). Show that the improper integral $\int_{-\infty}^{\infty} \frac{dx}{1+x^2}$ is convergent and find its value.
 - b). Test for the convergence of the improper integral $\int_{1}^{\infty} \frac{\log x}{x+2} dx$.
- 31. a). Test for the convergence and absolute convergence of the series $1 \frac{1}{4} + \frac{1}{7} \frac{1}{10}$
 - b). Find the Taylor series of $f(x) = \sin x$ at x = 0.
- 32. a). Identify the function $f(x) = x \frac{x^3}{3} + \frac{x^5}{5} + \dots$
 - b). Find the values of x for which the series $x \frac{x^3}{3} + \frac{x^5}{5} \dots$ Converges.
- 33. Find the length of the astroid $x = cos^3t$, $y = sin^3t$, $0 \le t \le 2\pi$.
- 34. a). Find f_x and f_y if $f(x,y) = tan^{-1}(\frac{y}{x})$.
 - b). Express $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s if $w = x + 2y + z^2$, $x = \frac{r}{s}$, $y = r^2 + \ln(s)$

 $(3 \times 8 = 24)$