1B3N20211	(Pages : 2)	Reg. No:
		Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester B.Sc Degree Examination, November 2020

BPH3B03 - Electrodynamics - I

(2019 Admission onwards)

Time: 2 hours

Max. Marks: 60

Section A

Answer all questions. Answer in two or three sentences. Each correct answer carries a maximum of two marks.

- 1. Distinguish between scalar and vector quantities. Give three examples of each.
- 2. Two forces of equal magnitude, F act at right angles. Find the magnitude and direction of the resultant.
- 3. What is the physical significance of divergence of a vector.
- 4. State and explain Stoke's theorem.
- 5. State and explain Gauss's law.
- 6. State Felmings right hand rule.
- 7. What is equipotential surface? Give an example.
- 8. Derive an expression for the energy of a dipole in an electric field.
- Determine the energy density of an electric field within a linear dielectric medium with permittivity ε.
- 10. Derive equation of continuity.
- 11. Discuss magnetization.
- 12. Explain retentivity and coercivity.

(Ceiling: 20 Marks)

Section B (Paragraph/Problem) (Answer all questions in a paragraph of about half a page to one page. Each correct answer carries a maximum five marks)

- 13. Show that $\delta(kx) = \frac{1}{|k|} \delta(x)$
- 14. Find the magnitude and direction of result of subtraction of two vectors.
- 15. Derive the expression for energy in a dielectric medium
- 16. At the interface between one linear dielectric and another the electric field lines bends.

Show that
$$\frac{\tan \theta_1}{\tan \theta_2} = \frac{\varepsilon_1}{\varepsilon_2}$$

- 17. Discuss magnetostatic boundary conditions
- 18. An infinitely long cylinder of radius R carries a frozen magnetization $\overline{M} = kr\hat{z}$ parallel to the axis. There is no free current anywhere. Find the magnetic field inside and outside the cylinder.
- 19. Derive the expression for vector potential in terms of bound currents.

(Ceiling:30Marks)

Section C (Essay) Answer anyone in about two pages .Each question carries ten marks)

- 20. Derive an expression for the capacitance of a parallel plate capacitor and spherical capacitor. Also set up an expression for energy density of a capacitor.
- 21. State Biot Savart's law and apply it to find the magnetic field along the axis of the coil carrying current.

(1x10=10 Marks)

1B3N20212	(Pages : 2)	Reg. No:
		Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester B.Sc Degree Examination, November 2020 BPH3C03 – Mechanics, Relativity, Waves & Oscillations

(2019 Admission onwards)

Time: 2 hours Max. Marks: 60

Section A

Answer all questions. Answer in two or three sentences. Each correct answer carries a maximum of two marks.

- 1. Write the Galilean transformation equations.
- 2. What is the need of studying different frames of reference?
- 3. What is Coriolis force?
- 4. What is energy function?
- 5. A particle is released from a height h from the surface of the earth. Show that energy function of the conservative force field is invariant to change of position and time.
- 6. Give any three characteristics of central force motion
- 7. Explain proper frame & proper time.
- 8. State postulates of special theory of relativity.
- 9. What is ether hypothesis?
- 10. Define group velocity of the wave packet.
- 11. Show that for a harmonic oscillator the total energy is proportional to the square of the amplitude.
- 12. Distinguish between progressive and stationary wave.

(Ceiling: 20 Marks)

Section B (Paragraph/Problem) (Answer all questions in a paragraph of about half a page to one page. Each correct answer carries a maximum five marks)

- 13. Calculate the fictitious force and total force on a body of mass 10 kg, relative to a frame moving vertically upwards on earth with an acceleration of 5m/s², g= 9.8 m/s²
- 14. The angular velocity of a rotating rigid body about an axis is $\omega = 4i + j 2k$. Find the linear velocity of a point p on the body whose position vector relative to a point on the axis of rotation is 2i 3j + k
- 15. A particle is acted on by constant forces 3i + 2j + 5k and 2i + j 3k and is displaced from a point whose position vector is 2i j 3k to a point whose position vector is 4i 3j + 7k.
 Calculate the work done.
- 16. Calculate the work done when a force $F = 3xy i y^2 j$ moves a particle in the X-Y plane from (0,0) to (1,1) along the parabola $y = 2x^2$.
- 17. Derive Einstein's mass energy relation.
- 18. Calculate the De-Broglie wave length associated with an electron of energy 5MeV, $m_e=9.1 \times 10^{-31} \ kg, \, h=6.62 \times 10^{-34} Js.$
- 19. A 100 g mass attached to a spring, is set into oscillations from its equilibrium position with initial velocity of 5 cm/sec .The time of oscillation is measured to 2sec. Find the maximum displacement and the spring constant.

(Ceiling:30Marks)

Section C (Essay)

Answer anyone in about two pages . Each question carries ten marks.

- 20. Distinguish between inertial and non inertial frames of reference. For Cartesian frames S, and S' with common origin and Z axis, work out the transformation equation for velocity and acceleration when S' rotates about the common Z axis with constant angular velocity.
- 21. (a) State and explain the principle of conservation of angular momentum. Show that for central force motion the angular momentum is conserved and hence the areal velocity remains constant.
 - (b) Give two examples of dynamical systems to illustrate the consequences of angular momentum conservation.

(1x10=10 Marks)