

1B3N20198	(Pages: 2)	Reg. No:
		Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester B.Sc Degree Examination, November 2020 BMT3B03 - Theory of Equations and Number Theory

(2019 Admission onwards)

Time: 2 1/2 hours

Max. Marks: 80

Section A(Short Answer type)
Ceiling (Maximum marks – 25Marks
Each question carries 2 marks

- 1. Find the quotient and reminder when $x^5 3x^2 + 6x 1$ divided by $x^2 + x + 1$
- 2. Solve the equation $3x^3 16x^2 + 23x 6 = 0$ if the product of two of its root is 1.
- 3. Separate the roots of the equation $2x^5 5x^4 + 10x^2 10x + 1 = 0$
- 4. Define Symmetric and sigma function?
- 5. Evaluate the sum $\sum_{k=1}^{50} (k^3 + 2)$.
- 6. Let a function f(x) on W be recursively defined as

$$(x) = \begin{cases} x - 10 & \text{if } x > 100 \\ f(f(x+11)) & \text{if } 0 \le x \le 100 \end{cases}$$
. Then find $f(98)$.

- 7. Evaluate $\sum_{d|18} (\frac{18}{d})$, where d is a positive integer.
- 8. Determine whether 1729 is prime or composite.
- 9. Express the gcd of the pair of numbers 24, 28 as a linear combination of the numbers.
- 10. State the Fundamental Theorem of Arithmetic.
- 11. Prove that Two positive integers a and b are relatively prime if and only if [a, b] = ab.
- 12. Determine the number of incongruent solutions of the linear congruence $91y \equiv 119 \pmod{28}$
- 13. Define Euler's phi function. Compute $\varphi(18)$ and $\varphi(21)$.
- 14. Let a be a solution of the congruence $x^2 \equiv 1 \pmod{m}$. Show that m a is also a solution.
- 15. Compute $\tau(36)$ and $\sigma(36)$.

(Ceiling =25Marks)

Section B(Paragraph type) Ceiling (Maximum marks) – 35Marks Each question carries 5 marks

- 16. (a) Define Taylor's Formula
 - (b) Calculate the values of $f(x) = -x^4 + 6x^3 + x 1$, and their Derivatives at x = 1
- 17. Solve $x^3 7x^2 + 16x 12 = 0$, which has multiple roots
- 18. Prove that there are infinitely many primes.
- 19. Let a function f(x) on W be recursively defined as

$$(x) = \begin{cases} x - 10 & \text{if } x > 100 \\ f(f(x+11)) & \text{if } 0 \le x \le 100 \end{cases}$$
. Then compute $f(99)$ and $f(f(99))$.

- 20. Using the Euclidean algorithm, find (2024, 1024)
- 21. Let a and b be any two positive integers, and r be the remainder when a is divided by b. Let d = (a, b) and d' = (b, r). Then prove that d'|d.
- 22. Solve the linear congruence $15x \equiv 7 \pmod{13}$.
- 23. State and prove Fermat's Little Theorem.

(Ceiling =35Marks)

Section C (Essay type) Answer any two questions Each question carries 10 marks

- 24. (a) State Rolle's Theorem
 - (b) Separate the roots of the equation $2x^5 5x^4 + 10x^2 10x + 1 = 0$
 - (c) How many real roots has the equation $x^4 4ax + b = 0$
- 25. State and prove Division algorithm for integers.
- 26. (a) Two positive integers, α and b are relatively prime if and only if there are integers α and β such that $\alpha \alpha + \beta b = 1$.
 - (b) If a|c and b|c, and (a, b) = 1, then prove that ab|c. State and prove the Fundamental Theorem of Arithmetic.
- 27. Define a multiplicative function. Prove that the Euler's phi function φ is multiplicative.

 $(2 \times 10 = 20 \text{Marks})$

27

1B3N20199

(Pages: 2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester B.Sc Degree Examination, November 2020

BMT3C03 - Mathematics - 3

(2019 Admission onwards)

Time: 2 hours

Max. Marks: 60

Section A

A maximum of 20 marks can be earned from this section.

Each question carries 2 marks.

- 1. Graph the curve traced by the vector function $r(t) = 2 \cos t \mathbf{i} + 2 \sin t \mathbf{j} + 3 \mathbf{k}$, $t \ge 0$.
- 2. If $r(t) = i + tj + t^2k$, is the position vector of a moving particle. Find the tangential and normal components of the acceleration at any t.
- 3. Compute $\nabla F(x, y, z)$ for $F(x, y, z) = \frac{xy^2}{z^3}$.
- 4. Define the Curl of a vector field.
- 5. Find the divergence of a vector field F.
- 6. Evaluate $\oint_C x dx$, where C is the circle $x = cost \ y = sint$, $0 \le t \le 2\pi$.
- 7. Find Complex Number satisfying $z^2 = i$.
- 8. Write the complex number $\frac{i}{1+i}$ in the form a+ib.
- 9. Sketch the graph of the equation $Im(\bar{z} + 3i) = 6$.
- 10. Find the image of the line x = 0 under the mapping $f(z) = z^2$.
- 11. Define interior point of a set.
- 12. Find all values of z satisfying the equation $\cos z = i \sin z$.

Section B

A maximum of 30 marks can be earned from this section. Each question carries 5 marks.

- 13. Evaluate $\oint_C ydx + xdy + zdz$, where C is the helix. $x = cost, y = sint, z = t, 0 \le t \le 2\pi$.
- 14. Evaluate the double integral $\iint_R e^{x+3y} dA$ over the region bounded by the graphs of y = 1, y = 2, y = x and y = -x + 5.
- 15. Define length of a space curve. Find the length of the space curve traced by the vector function $r(t) = a cost i + a sint j + atk, 0 \le t \le 2\pi$.
- 16. Find the level surface of $f(x, y, z) = x^2 + y^2 + z^2$ passing through (1, 1, 1). Graph the gradient at the point.
- 17. Find a complex number z satisfying the equation $\bar{z}^2 = 4z$.
- 18. State and prove fundamental theorem for contour integrals.
- 19. Prove that $\cos^2 z + \sin^2 z = 1$.

Section C Answer any One question. Each question carries 10 marks

- 20. (a) Find the first partial derivatives of $f(x,y) = xe^{x^3y}$.
 - (b) Verify that the given function $z = \ln (x^2 + y^2)$ satisfies Laplace's equation $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$.
- 21. Evaluate the double integral $\iint_R xe^{y^2}dA$ over the region bounded by the graphs of $y = x^2, x = 0, y = 4$.