1B3N19198

(Pages: 2)

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester B.Sc. Mathematics Degree Examination, November 2019 BMAT3B03 - Calculus and Analytic Geometry

(2018 Admission onwards)

Time: 3 hours

Max. Marks: 80

PART- A Answer all Questions. Each carries one mark

- 1. Find $\frac{dy}{dx}$ if $y = x^x$, x > 0.
- 2. If $\cos hx = \frac{5}{4}$, then $\sin hx = ...$
- 3. Find $\frac{dy}{dx}$ if $y = x \sin hx \cos hx$.
- 4. Range of the function $y = \cos hx$ is
- 5. Define hyperbolic sin function in terms of exponential function
- 6. Evaluate $\lim_{x \to \frac{\pi}{2}} \frac{\sec x}{1 + \tan x}$.
- 7. The nth term of the sequence 2,1,4,3,6,5,8,7,.....
- 8. The least upper bound of $2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \frac{6}{5}, \dots$ is
- 9. Examine the convergence of $\sum_{n=1}^{\infty} \frac{2^n}{n^2}$.
- 10. Find the sum of the series $\sum_{n=1}^{\infty} \frac{2^{n-1}-1}{6^{n-1}}$.
- 11. Graph the polar region $r \le 0$ and $\theta = \frac{\pi}{4}$.
- 12. Find the foci of the ellipse $\frac{x^2}{9} + \frac{y^2}{16} = 1$.

(12 x1=12 marks)

PART B

Answer any nine questions. Each question carries two marks

- 13. Evaluate $\int_{-\pi/2}^{\pi/2} \frac{4\cos\theta}{3+2\sin\theta} d\theta$.
- 14. Evaluate $\lim_{x\to 0} \frac{x-\sin x}{x^3}$.
- 15. Show that the series $\frac{1}{1} + \frac{1}{3} + \frac{1}{7} + \frac{1}{15} + \dots$ Converges.
- 16. Show that the series $\sum_{n=1}^{\infty} n^2$ diverges.
- 17. Find the Taylor series expansion of $f(x) = e^{-x}$ at x = 0.

- 18. Find the polar equation of the ellipse $9x^2 + 4y^2 = 36$.
- 19. For what values of x does the power series $\sum_{n=1}^{\infty} n! x^n$ converges?
- 20. Sketch the curve $r = 1 \cos \theta$.
- 21. Find the limit of the sequence, whose nth term is $a_n = \frac{(10/_{11})^n}{(9/_{10})^n + (11/_{12})^n}$.
- 22. Find the limit of the sequence whose nth term is $a_n = \frac{n^2}{2n-1} \sin \frac{1}{n}$.
- 23. Test the convergence of the series $\sum_{n=1}^{\infty} n \sin \frac{1}{n}$.
- 24. Identify the conic and find its directrix $r = \frac{12}{3+3sin\theta}$.

 $(9 \times 2 = 18 \text{ marks})$

PART-C Answer any six questions. Each question carry five marks

- 25. Show that $\lim_{x\to\infty} (1+\frac{1}{x})^x = e^x$.
- 26. Find the entire length of $x^2/3 + y^2/3 = 1$.
- 27. Test the following series for convergence $\frac{1.2}{3.4.5} + \frac{2.3}{4.5.6} + \frac{3.4}{5.6.7} \dots$
- 28. Show that $\cos h^{-1}x = In(x + \sqrt{x^2 1}), x \ge 1$.
- 29. Find $\lim_{x\to\infty} x^{1/x}$.
- 30. Prove that if $\sum_{n=1}^{\infty} |a_n|$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.
- 31. Calculate e with an error of less than 10⁻⁶.
- 32. Find he area shared by the curves $r = a\sqrt{2}$ and $r = 2a \cos \theta$.
- 33. Find the coordinates of the center, eccentricity, foci and the equation to the directrix of $x^2 y^2 2x + 4y = 4$.

 $(6 \times 5 = 30 \text{ marks})$

PART- D Answer any two questions. Each question carry ten marks

- 34. (a) Graph the curve $r^2 = \sin 2\theta$.
 - (b) Find the points of intersection of the curves $r = 1 + \cos \theta$ and $r = 1 \cos \theta$.
- 35. (a) Solve for $x: 3^{\log_3 7} + 2^{\log_2 5} = 5^{\log_5 x}$.
 - (b) Discuss the convergence of the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}$, P > 0.
- 36. State and prove ratio test.

 $(2 \times 10 = 20 \text{ marks})$

43

1B3N19199

(Pages: 3)

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester B.Sc. Degree Examination, November 2019 BMAT3C03 – Mathematics

(2018 Admission onwards)

Time: 3 hours

Max. Marks: 80

Part A: Answer all questions. Each question carries 1 Mark.

- 1. Verify that the function $x^2 + y^2 = 1$ is a solution of the differential equation $x + y \frac{dy}{dx} = 0$.
- 2. What is a general solution of differential equation $\frac{dy}{dx} + p(x)y = 0$.
- 3. Define a perticular solution of an ordinay differential equation.
- 4. Check for exactness: $(x^3 + 3xy^2)dx + (y^3 + 3x^2y)dy = 0$.
- 5. The general solution of $\frac{d^2y}{dx^2} 4\frac{dy}{dx} + 4y = 0$ is . . .
- 6. State whether the functions x and log x are independent or not?
- 7. Find the row reduced echelon form of the matrix $A = \begin{bmatrix} 1 & -1 & 3 \\ -1 & 1 & 2 \end{bmatrix}$
- 8. Define rank of a non zero matrix.
- 9. The system of linear equations AX = 0 has a non trivial solution if the determinent A is
- 10. The eigen values of a Triangular marix are....
- 11. In Trapezoidal rule, find an upper bound for error estimate $|E_T|$.
- 12. Simpsons rule give exact value of the integral in ... number of steps.

 $(12 \times 1 = 12 \text{ marks})$

Part B: Answer any SEVEN questions. Each question carries 2 Marks.

- 13. Give a singular solution of $(\frac{dy}{dx})^2 x\frac{dy}{dx} + y = 0$.
- 14. Find an integrating factor of the differential equation $2\sin y^2 dx + xy\cos y^2 dy = 0$.
- 15. Solve the differential equation $(1+x^2)\frac{dy}{dx} = 1+y^2$.
- 16. The ODE y'' + ay' + by = 0 has solutions $y = e^{\lambda x}$, where λ is a root of $\lambda^2 + a\lambda + b = 0$, then what are general solutions of the ODE for three different cases of λ .

- 17. Write the Euler Cauchy equation of second order ODE and its auxiliary equation.
- 18. Show that a square matrix A and itstranspose A^T have same characteristic roots.
- 19. Find the characteristic equations of the matrix $A = \begin{bmatrix} -1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 3 & -1 \end{bmatrix}$
- 20. Explain the Trapezoidal rule, to find the approximate value of the given integral $\int_a^b f(x)dx$.
- 21. Using Picard's iteration method, solve y' = x + y, y(0) = 1. Find the first two approximated value of y at x = 0.1.

 $(7 \times 2 = 14 \text{ Marks})$

Part C: Answer any SIX questions. Each question carries 5 Marks.

- 22. Solve $x^3y' + 3x^2y = \cos x$.
- 23. Find the orthogonal trajectories of $x^2 y^2 = c^2$.
- 24. Find the curve through the origin in the XY-plane which satisfies y'' = 2y' and whose tangent at the origin has slope 1.
- 25. Solve the initial value problem $y'' + 3y' + 2.25y = -10e^{-1.5x}$, y(0) = 1 and y'(0) = 0
- 26. Under what condition the rank of the matrix $\begin{bmatrix} 2 & 4 & 2 \\ 3 & 1 & 2 \\ 1 & 0 & x \end{bmatrix}$ is 3.
- 27. Reduce the matrix $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ to its canonical form.
- 28. Use Trapezoidal rule, evaluate with n=4 to estimate $\int_0^2 \frac{1}{1+x} dx$.
- 29. Find the minimum number of subintervals needed to approximate the integral $\int_0^3 \sqrt{1+x} dx$, using simpson's rule with an error of magnitude less than 10^{-4} .

 $(6 \times 5 = 30 \text{ Marks})$

Part D: Answer any THREE questions. Each question carries 8 Marks.

- 30. Solve $y' + x\sin 2y = x^3\cos^2 y$.
- 31. Using the method of reduction of order solve the differential equation $x^2y'' 5xy' + 9y = 0$, given that $y = x^3$ is a solution.
- 32. Find all the eigen values of $\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ and an eigen vector corresponding to any one of the eigen value.
- 33. State Cayley Hamilton theorem. Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ and hence obtain A^{-1}
- 34. Find approximate solutions to the initial value problem $y'=1+y^2, \ y(0)=0$, using Picard's iteration method, Compare it with the actual solution.

 $(3 \times 8 = 24 \text{ Marks})$