1B4M17087	(Pages : 2)	Reg. No:
		Name:
FAR	OOK COLLEGE (AUTONOMOU	JS), KOZHIKODE
	ester B.Sc Mathematics Degree 1 04 – Theory of Equations, Matri (2015 Admission onward)	ces & Vector Calculus
Max. Time: 3 hours		Max. Marks: 80
	PART – A	te semal imigraphy a manipuga sulfille da 1900 (1965). Manipuga manipuga kanan a 1900 (1900) (1900)
Ar	swer all questions. Each question	carries one mark
 Form an equation we depend on the season of the season of	81 41 matrix e unit matrix of order n. tween two intersecting planes. ordinates of the point whose Carte	$5x^{2} - 11x + 3 = 0$ $\ln \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} =$ $\cos x^{7} - x^{4} + 10x^{3} - 28 = 0$ rix A is
	e function of a smooth curve.	$(12 \times 1 = 12 Marks)$
Answ	PART – B er any nine questions. Each questi	
two of its roots. 14. If the roots of x^3 - 15. If α , β , γ are the root 16. Explain Descartes' 17. Prove that zero is an 18. Find the value of k , 19. Show that no skew-	H $px^2 + qx + r = 0$, are in AP, shots of the equation $x^3 + px^2 + qx$ rule of signs. In eigen value of a matrix A if and if the rank of $\begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 1 & k \end{bmatrix}$ is 2. Symmetric matrix can be of rank 1	$+ r = 0$, find the value of $\sum \frac{1}{\alpha}$ only of A is non-singular.
20. Find the eigen value	es of $\begin{bmatrix} 1 & -2 \\ -3 & 1 \end{bmatrix}$	

21. Examine whether the system of equations 2x - 4y = 3, -3x + 6y = -4 has a solution.

23. Find the angle between the planes x + y = 1 and 2x + y - 2z = 2

24. Find the tangent vector to the curve $\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + t^3\mathbf{k}$ at the point (2, 4, 8)

22. Find the parametric equation of the line passing through the points (-2, 0, 3) and (3, 5, -2).

 $(9 \times 2 = 18 Marks)$

PART-C

Answer any six questions. Each question carries five marks

- 25. Solve the equation $3x^3 26x^2 + 52x 24 = 0$ whose roots are in geometric progression.
- 26. Solve the equation $x^5 5x^4 + 9x^3 9x^2 + 5x 1 = 0$
- 27. Solve by Cardon's method: $x^3 18x 35 = 0$
- 28. Show that multiplication of the elements of a row by a non-zero number does not change its rank.
- 29. If A is a square matrix and P is a non-singular matrix of the same order, show that the matrices A and $P^{-1}AP$ have the same characteristic roots.
- 30. Solve the system of equations x + y + z = 6, x y + z = 2, 2x + y z = 1
- 31. If A is a non-singular matrix prove that the eigen values of A^{-1} are the reciprocals of the eigen values of A
- 32. Solve the initial value problem: $\frac{d\mathbf{r}}{dt} = -t\mathbf{i} t\mathbf{j} t\mathbf{k}$, $r(\mathbf{0}) = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$
- 33. Find T, N and κ for the space curve $\mathbf{r}(t) = (e^t \cos t)\mathbf{i} + (e^t \sin t)\mathbf{j} + 2\mathbf{k}$

 $(6 \times 5 = 30 Marks)$

PART - D

Answer any two questions. Each question carries ten marks

- 34. (i) Solve $x^3 + x^2 16x + 20 = 0$, given that it has a double root.
 - (ii) If α , β , γ are the roots of the equation $x^3 6x + 7 = 0$, form an equation whose roots are $\alpha^3 + 2\alpha + 3$, $\beta^3 + 2\beta + 3$, $\gamma^3 + 2\gamma + 3$

المقر أوا طرح وموجو ها . هم أن ويوم المروزو به من على هام إنظير والمستعملة الأولى أنها من ا

35. (i) State Cayley Hamilton theorem

(ii) Using Cayley Hamilton Theorem, find
$$A^{-1}$$
 and A^{3} if $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$

- 36. (i) Find the equation of the plane passing through the (1, 1, -1), (2, 0, 2) and (0, -2, 1)
 - (ii) Find the rectangular coordinates of the centre of the sphere:

$$r^2 + z^2 = 4r\cos\theta + 6r\sin\theta + 2z$$

 $(2 \times 10 = 20 \, Marks)$

	Jul. 4		
1B4M17088		(Pages: 2)	Reg. No:

Mamae			
Name:	 and the second	 	

Max. Marks: 80

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester B.Sc Mathematics Degree Examination, March 2017 MAT4C04 – Mathematics

(2015 Admission onwards)

Max. Time: 3 hours

Part A

(Answer all 12 questions)

- 1. Give an example of Linear and Non-linear second order differential equations.
- 2. Find the general solution of y'' 2y = 0.
- 3. Check the linear dependence of the functions e^{2x} and e^{3x} .
- 4. Evaluate $\int_0^\infty e^{-st} \sin 2t \ dt$.
- 5. State the existence theorem for Laplace Transform.
- 6. Find $L^{-1} \left[\frac{(s+1)^2}{s^3} \right]$.
- 7. Give a function of period 2.
- 8. Solve the partial differential equation $\frac{\partial^2 u}{\partial x^2} u = 0$.
- 9. Check whether the function $f(x) = x^3 + \sin x$ is odd or even.
- 10. Write the formula for Euler Method to solve differential equations numerically.
- 11. Give the formula for finding the error in the Simpson's rule of integration.
- 12. Define unit step function.

 $(12 \times 1 = 12 \text{ marks})$

Part B (Answer any 9 questions)

- 13. Reduce to first order and solve 2xy'' = 3y'.
- 14. Solve $(D^2 + 3D + 2)y = 0$.
- 15. Find the particular solution of the differential equation $y'' + 4y = e^x$.
- 16. State and prove the first shifting theorem for Laplace transform.
- 17. Prove that $L(e^{at}) = \frac{1}{s-a}$.
- 18. Find the inverse Laplace transform of $\frac{s}{(s-1)^2+4}$.
- 19. FindL(t sint).
- 20. Obtain the Fourier coefficient a_0 for the function $f(x) = e^{-x}$ in $(0,2\pi)$.
- 21. Define and plot rectangular wave function.
- 22. Verify $u = e^{-4t} \cos x$ is solution of one dimensional heat equation.
- 23. Using Picard's method, find an approximate solution of y' = x + y; y(0) = 1 in 3 steps.
- 24. Find an upper bound for the error incurred in estimating $\int_0^{\pi} x \sin x \, dx$ with trapezoidal rule with n=4.

 $(9 \times 2 = 18 \text{ marks})$

Part C (Answer any 6 questions)

- 25. Using method of variation of parameters, solve $y'' + y = \sec x$.
- 26. Solve the initial value problem $x^2y'' 3xy' + 4y = 0$, y(1) = 0, y'(1) = 3.
- 27. Using convolution find $L^{-1}\left\{\frac{1}{(s+1)^2}\right\}$.
- 28. Solve the integral equation $y(t) = 2t 4 \int_0^t y(u)(t-u)du$.
- 29. Find L(f(t)) if $f(t) = \begin{cases} 2 & 0 < t < \pi \\ 0 & \pi < t < 2\pi \\ \sin t & t > 2\pi \end{cases}$
- 30. Solve the partial differential equation $u_x u_y = 0$ by separating the variables.
- 31. Find the Fourier series expansion of

$$f(x) = \begin{cases} -k & -\pi < x < 0 \\ k & 0 < x < \pi \end{cases}; \quad f(x + 2\pi) = f(x).$$

- 32. Using Simpson's rule with n=4, evaluate the approximate value $\int_0^2 \frac{1}{1+x} dx$.
- 33. Apply Runge-Kutta method with h = 0.1, to the initial value problem $y' = x + y^2$, y(0) = 1, in 2 steps.

 $(6 \times 5 = 30 \text{ marks})$

Part D (Answer any 2 questions)

- 34. Solve $y'' 4y' + 5y = e^{2x} \cos ex$.
- 35. Using Laplace transform solve $y'' 3y' + 2y = 4e^{2t}$; y(0) = -3, y'(0) = 5.
- 36. Find the two half range expansion of the function

$$f(x) = \begin{cases} \frac{1}{2}(\pi + x) & -\pi \le x < 0\\ \frac{1}{2}(\pi - x) & 0 \le x < \pi \end{cases}$$

$$(2 \times 10 = 20 \text{ marks})$$