30

1B4M20197	(Pages: 2)	Reg. No:
		Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester BSc Degree Examination, March/April 2020 BMAT4B04 - Theory of Equations, Matrices & Vector Calculus

(2018 Admission onwards)

Time: 3 hours Max. Marks: 80

PART- A Answer allQuestions. Each carries one mark

- 1. If 1+i is a root of $4x^4 8x^3 + 7x^2 + 2x 2 = 0$ without solving the equation completely, state the other root.
- 2. If α_1 α_2 , α_3 ,are the roots of f(x) = 0, then what is the equation whose roots are α_1 -2, α_2 -2, α_3 -2,
- 3. If α , β , γ are the roots of $x^3 px^2 + qx r = 0$, find the value of $\Sigma \frac{1}{\alpha\beta}$
- 4. Define a reciprocal equation.
- 5. What is the rank of the identity matrix of order n?
- 6. Find the characteristic root of $\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.
- 7. A system of m homogeneous linear equations AX=0 in *n* unknowns has only trivial solution if
- 8. For what value of a the system of equations ax + 2y + 2 = 0, x + 2y = 3, 2x + 3y = 5 are consistent?
- 9. Parametrize the line segment joining the points (-3,2,-3) and (1,-1,4)
- 10. Find the angle between the planes 2x + 2y + 2z = 3, 2x 2y z = 5.
- 11. Find the unit tangent vector at the point (2,0,0) to the curve

$$r(t) = 2 \cos t i + 2 \sin t j + t k$$

12. Write the equation relating rectangular and cylindrical coordinates.

(12 x1=12 marks)

PART B:Short answer Type. Answer any *nine* questions. Each question carries *two* marks

- 13. Solve $x^3 6x^2 + 13x 10 = 0$, whose roots are in arithmetic progression.
- 14. Solve $x^3 4x^2 20x + 48 = 0$ given that two of its roots α , β are connected by the relation $\alpha + 2\beta = 0$.
- 15. If α , β , γ are the roots of $2x^3 + 3x^2 x 1 = 0$, find the equation whose roots are α -1, β -1, γ -1.
- 16. Find the rank of the matrix $\begin{bmatrix} 1 & 21 & 2 \\ 1 & 32 & 2 \end{bmatrix}$

- 17. If $A = \begin{bmatrix} 1 & 5 & 2 \\ 3 & 2 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 3 \\ 1 & 4 \\ 2 & 1 \end{bmatrix}$, then rank of AB is:
- 18. State Sylvester's law of nullity.
- 19. If A is a non-singular matrix then prove that $rank(AA^{T}) = rank(A)$
- 20. Find the value of x for which rank(A) = 3 where $A = \begin{bmatrix} 2 & 4 & 4 \\ 3 & 1 & 2 \\ 1 & 0 & x \end{bmatrix}$
- 21. Find the velocity and acceleration vectors of $\mathbf{r}(t) = (t^2 + 1)\mathbf{i} + (2t 1)\mathbf{j}$, $t = \frac{1}{2}$
- 22. Evaluate $\int_0^{\pi} [\cos t \, \mathbf{i} + \mathbf{j} 2t \, \mathbf{k}] \, dt$
- 23. Find the normal vectors for $\mathbf{r}(t) = (a \cos t)\mathbf{i} + (a \sin t)\mathbf{j}$
- 24. Find the length of one turn of the helix r(t) = (cost)i + (sint)j + tk

 $(9 \times 2 = 18 \text{ mark})$

PART-C: Short Essay Type.

Answer any six questions. Each question carries five marks

- 25. If α , β , γ are the roots of $x^3 + qx + r = 0$, form the equation whose roots are α^3 , β^3 , γ^3
- 26. Solve $x^4 10x^3 + 26x^2 10x + 1 = 0$
- 27. Solve the equation $x^3 9x + 12 = 0$ by Cardan's method.
- 28. Solve the system of equations x + 2y + 3z = 0, 2x + y + 3z = 0, 3x + 2y + z = 0
- 29. For the matrix A find non singular matrices P and Q such that PAQ is in the normal form

where
$$A = \begin{bmatrix} 1 & 2 & 3 & -2 \\ 2 & -21 & 3 \\ 3 & 0 & 4 & 1 \end{bmatrix}$$

- 30. Find the distance of the point P = (1,1,5) to the line x = 1 + t, y = -2t, z = 2t
- 31. Find the characteristic equation of $A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & 2 \\ -1 & 1 & 3 \end{bmatrix}$ and verify Cayley-Hamilton
- theorem. 32. Find the distance from (0, 0, 12) to the line x = 4t, y = -2t, z = 2t.
- 33. Find the curvature of $\mathbf{r}(t) = (a \cos t)\mathbf{i} + (a \sin t)\mathbf{j} + bt \mathbf{k}$, $a, b \ge 0$, $a^2 + b^2 \ne 0$

 $(6 \times 5 = 30 \text{ marks})$

PART- D: Essay Type Questions.

Answer any two questions. Each question carries ten marks

- 34. Solve $x^4 + 2x^3 7x^2 8x + 12 = 0$ using Ferrari's method.
- 35. Solve the system of equations x + 2y 3z 4w = 6, x + 3y + z 2w = 4, 2x + 5y - 2z - 5w = 10.
- 36. For the curve $r(t) = (2 + 3t + 3t^2)\mathbf{i} + (4t + 4t^2)\mathbf{j} 6 \cos \mathbf{k}$ write the acceleration $(2 \times 10 = 20 \text{ marks})$ \mathbf{a} in the form $\mathbf{a} = \mathbf{a}_{\mathrm{T}} \mathbf{T} + \mathbf{a}_{\mathrm{N}} \mathbf{N}$ at t = 0.

(Pages: 2)

Reg. No:.....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester BSc Chemistry Degree Examination, March/April 2020 BMAT4C04(CH) – Mathematics

(2018 Admission onwards)

Time: 3 hours

Max. Marks: 80

Part A Answer All Questions. Each question has One mark.

- 1. Find the Laplace transform of $f(t) = t^2 2t$.
- 2. Define the periodic function.
- 3. Determine whether the function f(x) = |x| is even or odd.
- 4. Let a = [2, -1, 0] and b = [-4, 2, 5]. Find $a \times b$.
- 5. Find the parametric representation of the circle $x^2 + y^2 = 4$, z = 0.
- 6. Find the gradient field of $f(x, y) = x^2 + xy$.
- 7. Write the Two-dimensional Laplace equation.
- 8. Find the domain of the function $f(x, y) = \sqrt{y x^2}$
- 9. State the Mixed Derivative Theorem.
- 10. Give an example of an infinite group which is not cyclic.
- 11. Identify all the generators of the group $\langle Z, + \rangle$.
- 12. The order of identity element in any group G is

 $(12 \times 1 = 12 \text{ Marks})$

Part B Answer Any Seven Questions. Each question has Two marks.

- 13. Find the inverse Laplace transform of $F(s) = \frac{7}{(s-1)^3}$.
- 14. Find a_0 in the Fourier series expansion of $f(x) = \begin{cases} -k & \text{if } -\pi < x < 0 \\ k & \text{if } 0 < x < \pi \end{cases}$
- 15. Find divF and curl F for the vector field $\mathbf{F}(x, y, z) = x^2\mathbf{i} 2\mathbf{j} + yz\mathbf{k}$
- 16. Find the velocity and acceleration of r(t) = [4t, -3t, 0].
- 17. Find the components of the vector \mathbf{v} with initial point (3, 2, 0) and terminal point (5, -2, 0). Find $|\mathbf{v}|$.
- 18. Describe the level surfaces of the function $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$.
- 19. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ if $f(x, y) = x \cos xy$.
- 20. On \mathbb{Z}^+ , * is defined by a * b = a b. Determine whether * is a binary operation.
- 21. Find the order of the subgroup of Z_{12} generated by 8.

Part C Answer Any Six Questions. Each question has Five marks.

- 22. Find the Fourier cosine series of the function $f(x) = \pi x$, $0 < x < \pi$.
- 23. Find the Laplace transform of $f(t) = \sin^2 4t$.
- 24. Find the tangent to the ellipse $\frac{x^2}{4} + y^2 = 1$ at $p: (\sqrt{2}, \frac{1}{\sqrt{2}})$.
- 25. Find the length of the circular helix $r(t) = [2 \cos t, 2 \sin t, 6t]$ from (2, 0, 0) to $(2, 0, 24\pi)$.
- 26. Show that the function $f(x, y) = \frac{2x^2y}{x^4 + y^2}$ has no limit as (x, y) approaches (0, 0).
- 27. The plane x = 1 intersects the paraboloid $z = x^2 + y^2$ in a parabola. Find the slope of the tangent to the parabola at (1, 2, 5).
- 28. Prove that the binary structure $\langle Z, + \rangle$ is isomorphic to $\langle ZZ, + \rangle$.
- 29. Let S be the set of all real numbers except -1. Define * on S by a * b = a + b + ab. Show that $\langle S, * \rangle$ is a group.

 $(6 \times 5 = 30 \text{ Marks})$

Part D Answer Any Three Questions. Each question has Eight marks.

- 30. Find the Fourier series expansion of $f(x) = x + \pi$, $-\pi < x < \pi$ and $f(x + 2\pi) = f(x)$.
- 31. Find the inverse Laplace transform of $F(s) = \frac{3s-137}{s^2+2s+401}$.
- 32. a) Find a unit normal vector **n** of the cone of revolution $z^2 = 4(x^2 + y^2)$ at the point p: (1, 0, 2).
 - b) Prove that div(curl F) = 0.
- 33. Find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s at the point $(\frac{1}{2}, 1)$ if w = xy + yz + zx, x = r + s, y = r s, z = rs.
- 34. a)Construct the group table of Z₆.
 - b) Prove that a group has only one identity element.
 - c) Show that if $(a * b)^2 = a^2 * b^2$ for a and b in a group G, then a * b = b * a.

 $(3 \times 8 = 24 \text{ Marks})$

1B4M20198(D)	(Pages: 2)	Reg. No:
The transfer of the second of	Tels Bigrar II and said	Name:
FAROOK CO	OLLEGE (AUTONOMOUS),	KOZHIKODE
	Statistics Degree Examinat BMAT4C04(ST) – Mathemat (2018 Admission onwards)	
Time: 3 hours		Max. Marks: 80
PART A: Answer ALL the	questions. Each question c	earries one mark.
1. $L(\sin \pi t) = $ 2. $L^{-}(\frac{1}{s^{2}+9}) = $		
3. State the first shifting t	heorem for Laplace transfor	rm.

5. Three vectors form a linearly independent set of vectors if and only if their scalar

 $(12 \times 1 = 12 marks)$

4. If f(x, y, z) = xy - yz, then $\nabla f = \underline{\hspace{1cm}}$

7. Give an example of a function which is neither even nor odd.

9. The domain of the function $f(x, y) = \sqrt{x^2 - y}$ is _____

PART B: Answer any SEVEN questions. Each question carries two marks.

16. If f(x) is a periodic function of x of period p, then show that f(ax), $a \neq o$, is a

 $f(x) = \begin{cases} -k & \text{if } -\pi < x < 0 \\ k & \text{if } 0 < x < \pi \end{cases}$

17. Find the Fourier coefficient a_n for the 2π periodic function f(x) given by

8. The two dimensional Poisson equation is _____

13. Prove that the Laplace transform is a linear operation.

15. Find the angle between the vectors (1,2,0) and (3,-2,1).

14. Find the Laplace transform of $a + bt + ct^2$.

periodic function of x of period $\frac{p}{q}$.

6. The primitive period of sin 3x is _____

triple product is

12. Arg(-i) =_____

 $10.\frac{4+i}{2-3i} =$

11. $e^{i\pi} =$

- 18. Find the directional derivative of $f(x, y) = x^2 + y^2$ at the point P(1,1) in the direction of a = 2i - 4j.
- 19. Evaluate $\lim_{(x,y)\to(0,0)} \frac{e^y \sin x}{x}$
- 20. If $f(z) = z^2 + 3z$, then find the real and imaginary parts of f(z)
- 21. Write the complex number -1 i in the exponential form.

 $(7 \times 2 = 14 marks)$

PART C: Answer any SIX questions. Each question carries five marks.

- 22. Find $L(\sin 2t \cos 2t)$.
- 23. Calculate the length of the catenary $r(t) = ti + \cosh t j$ from t = 0 to t = 1.
- 24. Find the work done by a force p = [2,6,6] acting on a body if the body is displaced from a point A(3,4,0) to B(5,8,0).
- 25. Find the unit normal to the surface $z = \sqrt{x^2 + y^2}$ at the point (6,8, 10).
- 26. If $z = \tan^{-1} \frac{y}{x}$, prove that $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$
- 27. Find the solution of the partial differential equation $\frac{\partial^2 u}{\partial x \partial y} = -\frac{\partial u}{\partial x}$
- 28. Show that $f(x, y) = \frac{4x^6 y^2}{x^{12} + y^4}$ has no limit as (x, y) approaches (0, 0).
- 29. Prove that the equation |z 1 + 3i| = 2 represents a circle of radius 2.

 $(6 \times 5 = 30 marks)$

PART D: Answer any THREE questions. Each question carries eight marks.

- 30. Find the inverse Laplace transform of $\frac{1-7s}{(s-1)(s+2)(s-3)}$.
- 31. Find the Fourier series expansion for the function $f(x) = x^2$ in $[-\pi, \pi]$ with $f(x) = f(x + 2\pi) \forall x \in R.$
- 32. If v = (2y, 2z, 4x + z) and $w = (3z^2, 2x^2 y^2, y^2)$ then calculate div v, grad(divw)anddiv(curl w).
- 33. a) State the chain rule for composite function of single variable.
 - b) Express $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and if $w = x + 2y + z^2$, $x = \frac{r}{s}, y = r^2 + \log s, z = 2r$
- 34. Find the square roots of $1 \sqrt{3}i$ and express them in the rectangular coordinates.

 $(8 \times 3 = 24 marks)$

(Pages : 2)

Reg. No:

Name: ..

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester BSc Physics Degree Examination, March/April 2020 BMAT4C04(PH) – Mathematics

(2018 Admission onwards)

Time: 3 hours

Max. Marks: 80

Part A: Answer All questions. Each question has ONE mark

- 1) The Laplace transform of cos at is · · ·
- 2) The Inverse Laplace transform of $\frac{5}{s+3}$ is
- 3) What is the shifting Property of Laplace transform.
- 4) If $\mathcal{L}(f(t)) = F(s)$ then $\mathcal{L}(f''(t))$ is ...
- 5) Define a periodic function.
- 6) Give an example of an even function.
- 7) Let $\vec{a} = 2\vec{i} + 3\vec{j} + 4\vec{k}$ and $\vec{b} = 3\vec{i} 3\vec{j} + 2\vec{k}$, find $\vec{a}.\vec{b}$
- 8) Find a normal vector to the line x 2y + 2 = 0.
- 9) Compute the scalar triple product of the vectors $\vec{a} = \vec{i} + \vec{j} + \vec{k}$, $\vec{b} = \vec{i} + 2\vec{j} + 3\vec{k}$ and $\vec{c} = 2\vec{i} + 3\vec{j} + 4\vec{k}$.
- 10) Find the tangent to the curve $\vec{r}(t) = t^2 \vec{j} + t^3 \vec{k}$ at (1, 1, 1).
- 11) Domain of the function $f(x,y) = \sqrt{9-x^2-y^2}$ is ...
- 12) Let $f(x, y) = x^2 + xy^2 + 2xy + y^2$, find $\frac{\partial f}{\partial x}$ at the point (1, 0)

 $(12 \times 1 = 12 \text{ Marks})$

Part B: Answer Any Seven questions. Each question has Two marks

- 13) Let n be positive integer, then show that $\mathcal{L}(t^n) = \frac{n!}{s^{n+1}}$
- 14) Let f * g denotes the convolution of f and g, show that f * g = g * f
- 15) Find $\mathcal{L}(t e^{2t})$.
- 16) Find the Fourier series of f(x) = -1, $-\pi < x < \pi$.
- 17) Find the Fourier coefficient a_0 in the Fourier series expansion of the function given by $f(x) = \begin{cases} -1+x & \text{when } -\pi < x < 0 \\ 1+x & \text{when } 0 < x < \pi \end{cases}$ and $f(x) = f(x+2\pi)$.
- 18) A force $\vec{p} = 3\vec{i} 6\vec{k}$ acts on a line through a point A: (0, -1, 4) about a point Q: (4, 6, -1). Find the moment vector \vec{m} of p
- 19) If $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ and $|\vec{r}| = r$, then show that $\nabla(\frac{1}{r}) = -\frac{\vec{r}}{r^3}$
- 20) Evaluate $\lim_{(x,y)\to(0,0)} \frac{x^2 xy}{\sqrt{x} \sqrt{y}}$
- 21) Find $\frac{\partial z}{\partial x}$, if the equation yz lnz = x + y defines z as a function of x and y.

 $(7 \times 2 = 14 \text{ Marks})$

Part C: Answer Any Six questions. Each question has Five marks

- 22) Using Method of partial fraction, find the inverse Laplace transform of $\frac{1}{s(s+1)(s+2)}$
- 23) Find Laplace transform of the function

$$f(t) = \begin{cases} 1 & \text{if} \quad 0 < t < \pi \\ 0 & \text{if} \quad \pi < t < 2\pi \\ \sin t & \text{if} \quad t > 2\pi \end{cases}$$

- 24) Find Fourier series of the function $f(t) = \begin{cases} 0 & \text{if } -2 < t < 1 \\ 3 & \text{if } -1 < t < 1 \\ 0 & \text{if } 1 < t < 2\pi \end{cases}$ with period 4.
- 25) Obtain the half range cosine series of f(x) = x, when 0 < x < 4.
- 26) A particle moves in space so that its radius vector is given by $r = \cos t \ \vec{i} + \sin t \ \vec{j} + t \tan t \vec{k}$. Find the velocity and acceleration vectors at $t = \pi/4$.
- 27) Find the directional derivative at (1,3,-2) in the direction of $\vec{a}=-\vec{i}+2\vec{j}+2\vec{k}$, if f(x,y,z)=yz+xy+xz.
- 28) Show that the function $f(x,y)=\frac{x^4-y^2}{x^4+y^2}$ has no limit as $(x,y) \to (0,0)$.
- 29) Solve the differential equation $u_{xy} = u_x$, where u is a function of x and y.

 $(6 \times 5 = 30 \text{ Marks})$

Part D: Answer Any Three questions. Each question has Eight marks

- 30) Using Laplace transform, solve the initial value problem $y^{''}+6y^{\prime}+8y=e^{-3t}-e^{-5t},\ y(0)=0,\ y^{\prime}(0)=0.$
- 31) Solve the integral equation $y(t) = t + \int_0^t y(\tau) \sin(t \tau) d\tau$.
- 32) Find the Fourier series of the function given by $f(x) = \begin{cases} 0 & \text{when } -\pi < x < 0 \\ \frac{\pi x}{4} & \text{when } 0 < x < \pi \end{cases}$ and $f(x) = f(x + 2\pi)$.
- 33) If $\nabla f = (y + y^2 + z^2)\vec{i} + (x + z + 2xy)\vec{j} + (y + 2xz)\vec{k}$, find f, such that f(1, 1, 1) = 3.
- 34) Let w = xy + yz + xz, x = u + v, y = u v, and z = uv, then evaluate $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$ in terms of u and v.

 $(3 \times 8 = 24 \text{ Marks})$

1B4M20198(B)

(Pages :3)

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester B.Sc CS Degree Examination, March/April 2020 BMAT4C04(CS) – Mathematics

(2018 Admission onwards)

Time: 3 hours

Max. Marks: 80

Part A

Answer All Questions. Each question has One mark.

- 1. Find the Laplace transform of $f(t) = a + bt + ct^2$.
- 2. Find the fundamental period of $\sin 3x$.
- 3. Give an example of a function which is neither even nor odd.
- 4. Find the components of the vector v with initial point (4, 0, 2) and terminal point (6, -1, 2).
- 5. Let a = [2, -1, 0] and b = [-4, 2, 5]. Find $a \times b$.
- 6. Find a parametric representation of the circle of radius 3 with centre (4,6).
- 7. Find the domain of the function $f(x, y, z) = \frac{y}{x^2}$.
- 8. Find the value of $\frac{\partial f}{\partial x}$ at the point (4, -5) if $f(x, y) = x^2 + 3xy + y 1$.
- 9. Write the order of the equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y)$.
- 10. Write the negation of the proposition: "At least 10 inches of rain fell today in Miami"
- 11. Write in the form if p then q: "To get tenure as a professor, it is sufficient to be world famous"
- 12. Find the dual of $(p \lor F) \land (q \lor T)$

 $(12 \times 1 = 12 \text{ Marks})$

Part B

Answer Any Seven Questions. Each question has Two marks.

- 13. Find the Laplace transform of $f(t) = \cos(\omega t + \theta)$, where θ is a constant.
- 14. Find a_0 in the Fourier series expansion of $f(x) = \begin{cases} -2 & \text{if } -\pi < x < 0 \\ 2 & \text{if } 0 < x < \pi \end{cases}$
- 15. Find the angle between the vectors $a = [1, 2, 0]^4$ and b = [3, -2, 1].
- 16. Find the velocity and speed of $r(t) = [t, t^2, 0]$.
- 17. Find div **F** and curl **F** for the vector field $\mathbf{F}(x, y, z) = (x^3 + y^3)\mathbf{i} + 3xy^2\mathbf{j} + 3y^2z\mathbf{k}$

- 18. Find an equation for the level surface of the function $f(x, y, z) = \ln(x^2 + y + z^2)$ passes through the point (-1, 2, 1).
- 19. Find $\lim_{(x,y)\to(0,0)} \frac{x^2-xy}{\sqrt{x}-\sqrt{y}}$.
- 20. Find $\frac{dy}{dx}$ if $y^2 x^2 \sin xy = 0$.
- 21. Show that $\neg(p \rightarrow q)$ and $p \land \neg q$ are logically equivalent.

 $(7 \times 2 = 14 \text{ Marks})$

Part C Answer Any Six Questions. Each question has Five marks.

- 22. Find the inverse Laplace transform of $F(s) = \frac{1-7s}{(s-1)(s+2)(s-3)}$.
- 23. Find the Fourier cosine series of the function $f(x) = x^2$, 0 < x < L.
- 24. Find the tangent to the ellipse $\frac{1}{4}x^2 + y^2 = 1$ at $P: (\sqrt{2}, \frac{1}{\sqrt{2}})$.
- 25. Find the directional derivative of $f(x, y, z) = 2x^2 + 3y^2 + z^2$ at p:(2, 1, 3) in the direction of a = [1, 0, -2].
- 26. Show that $f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2} & ; (x,y) \neq (0,0) \\ 0 & ; (x,y) = (0,0) \end{cases}$ is continuous at every point except at the origin.
- 27. Write the chain rule and find $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$ in terms of u and v at the point $(\frac{1}{2}, 1)$ if w = xy + yz + zx, x = u + v, y = u v and z = uv.
- 28. Express the statement using predicates and quantifiers: "Every positive integer is the sum of the squares of four integers."
- 29. Construct a truth table for $p \to (\neg q \lor r)$.

 $(6 \times 5 = 30 \text{ Marks})$

Part D

Answer Any Three Questions. Each question has Eight marks.

- 30. a) Find the inverse Laplace Transform of $F(s) = \frac{1}{s^2 4s + 5}$.
 - b). Find the Laplace Transform of $f(t) = \begin{cases} 1 & ; if t \le 1 \\ 2 & ; if 1 < t \le 2 \\ 0 & ; if t > 2 \end{cases}$

- 31. Find the Fourier series expansion of $f(x) = \begin{cases} -\pi & \text{; } if \pi < x < 0 \\ x & \text{; } if \ 0 < x < \pi \end{cases}$ and $f(x + 2\pi) = f(x).$
- 32. a). Prove that gradient fields are irrotational.
 - b). Find the length of the catenary $r(t) = [t, \cosh t]$ from t = 0 to t = 1.
- 33. a). Show that the function $f(x, y) = \frac{2x^2y}{x^4 + y^2}$ has no limit as (x, y) approaches (0, 0).
 - b). The plane x = 1 intersects the paraboloid $z = x^2 + y^2$ in a parabola. Find the slope of the tangent to the parabola at (1, 2, 5).
- 34. a) Express each of these statements using quantifiers, logical connectives:
 - (i) "All clear explanations are satisfactory"
 - (ii) "Some excuses are unsatisfactory"
 - (iii) "Some excuses are not clear explanations"
 - b) Does (iii) follow from (i) and (ii)?

 $(3 \times 8 = 24 \text{ Marks})$