3B1N	120	085
------	-----	-----

(Pages		21
(Pages	-	2
(1 ages		-1

Reg. No:.... Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester B.Sc Physics Degree Examination, November 2020 BPH1B01 - Mechanics - I

(2020 Admission onwards)

Time: 2 hours

Max. Marks: 60

The symbols used in this question papers have their usual meanings Section A- Short Answer Type (Answer all questions in two or three sentences, each correct answer carries a maximum of 2 marks)

- What is an isolated body? Define an inertial coordinate system. 1.
- Explain Inertial and Non-inertial Systems. 2.
- What are fictitious forces? Give an example. 3.
- Explain contact forces with examples. What is its origin? 4.
- State and explain law of conservation of linear momentum. 5
- State and explain work energy theorem. 6.
- What are conservative forces? Give examples. 7
- What is the relation between force and potential energy? 8
- Define torque. What is its unit? 9.
- Obtain expression for moment of inertia of a uniform thin stick of mass M and length L, 10. around a perpendicular axis through its midpoint.
- State and explain the parallel axis theorem. 11.
- Give an example of the law of conservation of angular momentum. 12.

(Ceiling-20)

+

Section B- Paragraph/ Problem Type

(Answer all questions in a paragraph of about half a page to one page, each correct answer carries a maximum of 5 marks)

13. A block slides on a wedge (a planar surface) which in turns slides on a horizontal table, as shown in the sketch. The angle of the wedge is θ and its height is h. How are the accelerations of the block and the wedge related? Neglect friction.

- 14 a)A mass m on the end of a string of length R whirls in free space in a horizontal plane, with constant speed v. Find the force on m.
 - b) If you whirl a pebble at the end of a string, you feel an outward force. Discuss.
- Two blocks m_1 and m_2 are in contact on a horizontal table. A horizontal force is applied to one of the blocks, as shown in the drawing. If $m_1 = 2$ kg, $m_2 = 1$ kg, and F = 3 N, find the force of contact between the two blocks.

The Atwood's machine shown in the drawing has a pulley of negligible mass. Find the tension in the rope and the acceleration of M.

17 A 45° wedge is pushed along a table with constant acceleration A. A block of mass m slides without friction on the wedge. Find the block's acceleration. Gravity is directed down.

- What are conservative forces? State work energy theorem and arrive at law of conservation of mechanical energy.
- 19 Discuss small oscillations in a bound system

(Ceiling-30)

Section C-Essay Type Answer any one question. Answer carries 10 marks

- A block of mass M_1 rests on a block of mass M_2 which lies on a frictionless table. The coefficient of friction between the blocks is μ . What is the maximum horizontal force which can be applied to the blocks for them to accelerate without slipping on one another if the force is applied to (a) block 1 and (b) block 2?
- Derive expression for angular momentum and torque about origin A and B for a conical pendulum which is in steady circular motion with constant angular speed ω.

(1x10=10 marks)

2B1N20086	(Pages:2)	Reg. No:
		Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester B.Sc Degree Examination, November 2020 BPH1C01 - Properties of Matter & Thermodynamics

(2020 Admission onwards)

Time: 2 hours Max. Marks: 60

The symbols used in this question paper have their usual meanings

Section A – Short Answer type (Answer all questions in two or three sentences, each correct answer carries a maximum of 2 marks)

- 1. Define bending moment.
- 2. Explain neutral surface and neutral axis of a beam.
- 3. Define torsional rigidity of a wire.
- 4. What is the reason for I- cross section for girders.
- 5. Small insects can walk on water surface. Why?
- 6. Show that surface tension is numerically equal to surface energy.
- 7. Distinguish between streamline flow and turbulent flow of liquids.
- 8. What are the limitations of first law of thermodynamics. ..
- 9. Cp > Cv . Explain.
- 10. Distinguish between reversible and irreversible process.
- 11. How is entropy related to disorder.
- 12. What is a Carnot's refrigerator.

(Ceiling - 20)

Section B – Paragraph/Problem type (Answer all questions in a paragraph of about half a page to one page, each correct answer carries a maximum of 5 marks)

- 13. Show that the potential energy stored per unit volume of a strained wire is $\frac{1}{2} \times \text{stress} \times \text{strain}$.
- 14. Discuss the effects of pressure on melting point and boiling point of liquids.
- 15. State and explain Carnot's theorem.
- 16. Show that Kelvin-Planck statement of second law of thermodynamics is equivalent to Clausius statement.
- 17. There is no change in the volume of a wire during stretching. What is the value of Poisson's ratio for the wire.
- 18. A cantilever of length 0.4 m is loaded at the free end. If the depression at a distance 10 cm from free end is 1 cm, find the depression at the free end.
- 19. Calculate the change in entropy when 0.1 kg of water at 15° C is mixed with 0.15 Kg of water at 50° C. Specific heat of water = 4.2×10^{3} J Kg⁻¹ K⁻¹.

(Ceiling - 30)

Section C- Essay type (Answer any one question, each question carries 10 marks)

- 20. What is bending moment? Derive an expression for the bending moment of a horizontal beam fixed at one end and loaded at the other end.
- 21. Explain the working of a Carnot's heat engine. Deduce its efficiency.

 $(1 \times 10 = 10)$