B5N18300

(Pages: 2)

Reg. No:.... Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fifth Semester B.Sc Mathematics Degree Examination, November 2018

MAT5B05 - Vector Calculus

(2015 Admission onwards)

Max. Time: 3 hours

Max. Marks: 120

Section A Answer all twelve questions (1-12)Each question carries 1 Mark.

- 1. Define limit of a function of two variables.
- 2. Define critical point of a function of two variables.
- 3. Find the limit $\lim_{(x,y)\to(0,0)} \frac{4x^2-4y^2}{x-y}$
- 4. Find the rate of change of the function $f(x, y) = x^2 + y^2 + 2x + 4$ in the direction of the vector î.
- 5. Define exact differential form.
- 6. State the tangential form of Green's Theorem in the plane.
- 7. What is the direction of maximum rate of change of a function f(x, y) at a point P?
- 8. Define flux across a plane curve.
- 9. If C is the unit circle with centre at the origin, then what is the value of the integral $\int_{C} x dy - y dx$
- 10. Find the jacobian of the transformation $x = r\cos\theta$, $y = r\sin\theta$.
- 11. What are the level curves of the function f(x, y) = x + y
- 12. Define potential function for a vector field.

 $(12 \times 1 = 12 \text{ Marks})$

Part B

Answer any Ten from the following fourteen questions (13-26). Each question carries 4 Marks

- 13. Find the linearization of the function $f(x, y) = x^3y^4$ at (1,1)
- 14. Find local extreme values of $f(x,y) = x^2 + y^2$.
- 15. Find $\lim_{(x,y)\to(0,0)} \frac{y^2}{x^2+y^2}$.
- 16. Find the line integral of f(x, y, z) = x + y over the line segment x = t, y = 1 t, z = 0from (0,1,0) to (1,0,0).
- 17. Find a linearization of f(x, y) = xy + 2yz 3xz at the point (1,1,0).
- 18. Find the area of the ellipse $\vec{r}(t) = a \cos t \hat{i} + b \sin t \hat{j}$, $0 \le t \le 2\pi$.
- 19. Evaluate $\int_0^3 \int_0^2 (4 y^2) dy dx$.
- 20. Find the equivalent polar form of the Cartesian integral $\int_0^2 \int_0^x y dy dx$.
- 21. Convert the integral $\int_{-1}^{1} \int_{0}^{\sqrt{1-y^2}} \int_{0}^{x} (x^2 + y^2) dz dx dy$ to an equivalent integral in cylindrical coordinates.

- 22. Find the work done by $\vec{F}(x,y) = (y-x^2)\hat{i} + (z-y^2)\hat{j} + (x-z^2)\hat{k}$ over the curv $\vec{r}(t) = t \hat{i} + t^2\hat{j} + t^3\hat{k}$, $0 \le t \le 1$ from (0,0,0) to (1,1,1).
- 23. Find the counter clockwise circulation for the field $\vec{F}(x,y) = (x-y)\hat{i} + (y-x)\hat{j}$ a the boundary of the curve bounded by the lines x = 0, y = 0, x = 1 and y = 1 by using Green's theorem
- 24. Show that Curl grad f = 0
- 25. Find the derivative of the function $f(x, y) = 2xy 3y^2$ at $P_0(5,5)$ in the direction $\vec{A} = 4\hat{i} + 3\hat{j}$.
- 26. Find the quadratic approximation of the function $f(x, y) = y \sin x$ near the origin. (10 x 4 = 40 I

Part C

Answer any Six from the following nine questions (27-35). Each question carries 7 Marks.

- 27. Find the local maxima and local minima of the function $f(x, y) = x^2 + xy + y^2 + 3x 3y + 4$.
- 28. Using chain rule express $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$ in terms of u and v, if $w = \ln(x^2 + y^2 + z^2)$, $x = ue^v \sin u$, $y = ue^v \cos u$, $z = ue^v$. Also evaluate $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$ at the point (u, v) = (-2, 0).
- 29. Find the parametric equations for the line tangent to the curve of intersection of the surfaces $x^2 + y^2 = 2$, x + z = 4 at the point (1,1,3)
- 30. Evaluate the line integral $\int_{(0,0,0)}^{(1,2,3)} 2xy dx + (x^2 z^2) dy 2yz dz$.
- 31. Find the work done by $\vec{F} = (4x 2y)\hat{\imath} + (2x 4y)\hat{\jmath}$ in moving a particle once clockwise around the circle $(x 2)^2 + (y 2)^2 + (z 2)^2 = 4$.
- 32. Find the area of the cap cut from the hemisphere $x^2 + y^2 + z^2 = 2$, $z \ge 0$ by the cylinder $x^2 + y^2 = 1$.
- 33. Find the flux of $\vec{F} = xy\hat{\imath} + yz\hat{\jmath} + xz\hat{k}$ outward through the surface of the cube cut the first octant by the planes x = 1, y = 1 and z = 1.
- 34. Find the volume of the region D enclosed by the surfaces $z = x^2 + 3y^2$ and $z = 8 x^2 y^2$.
- 35. Evaluate $\int_0^1 \int_0^{1-x} \sqrt{(x+y)} (y-2x)^2 dy dx$.

$(6 \times 7 = 42)$

Part D

Answer any two from the following three questions (36 - 38). Each question carries 13 Marks.

- 36. The plane x + y + z = 1 cuts the cylinder $x^2 + y^2 = 1$ in an ellipse. Find the pothe ellipse that lie closest to and farthest from origin.
- 37. Verify the divergence theorem for the field $\vec{F} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ over the sphere $x^2 + y^2 + z^2 = 9$.
- 38. Evaluate the circulation of the field $\vec{F} = x^2y^3\hat{\imath} + \hat{\jmath} + z\hat{k}$ around the curve C, wher the intersection of the cylinder $x^2 + y^2 = 4$ and the hemisphere $x^2 + y^2 + z^2 = 1$, $z \ge 0$, by using Stoke's theorem.

5N18301	
---------	--

(Pages: 2)

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fifth Semester B.Sc Mathematics Degree Examination, November 2018 MAT5B06 - Abstract Algebra

(2015 Admission onwards)

ound

of

Max. Time: 3 hours

Max. Marks: 120

Section A

Answer all the twelve questions Each question carries 1 mark.

Iarks)

- 1. Define binary operation on a set. Give one example.
- 2. What is the inverse of $A = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}$ in the group $\mathbb{M}_2(\mathbb{R})$ under matrix addition.
- 3. List all subgroups of $(\mathbb{Z}_4, +_4)$.
- 4. Define cyclic group.
- 5. Give an example of an infinite non-abelian group.
- 6. S_3 has exactly _____ subgroups of order 2.
- 7. Define odd permutation.
- 8. The index $(2\mathbb{Z}: 4\mathbb{Z})$ is
- 9. Define normal subgroup H of a group G.
- 10. Give an example of a ring without unity.
- 11. Characteristic of the ring $(\mathbb{Z}, +, ...)$ is
- 12. Give an example of a finite field.

 $(12\times1=12 \text{ marks})$

Section B

Answer any ten out of fourteen questions. Each question carries 4 marks.

ounter

from

Tarks)

13. Is $M_2(\mathbb{R})$, the collection of all 2 × 2 real matrices under multiplication a group? Justify your answer.

14. Show that the groups $(\mathbb{Z}, +)$ and $(2\mathbb{Z}, +)$ are isomorphic.

15. Show that subgroup of an abelian group is abelian. Give an example of a non-abelian group in which all proper subgroups are abelian.

16. Let G be a group and suppose a*b*c=e, for a, b, $c \in G$. Show that b*c*a=e

17. Find the *gcd* (360,420)

- 18. Define permutation of a set. Is $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ a permutation? Justify your claim.
- 19. Show that \mathbb{Z}_n has no proper nontrivial subgroups if p is a prime number.
- 20. Find the orbits of the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 4 & 1 & 5 & 2 & 6 & 8 & 7 \end{pmatrix}$ 21. Find the order of the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 1 & 5 & 3 & 4 & 6 & 8 & 7 \end{pmatrix}$ in S_8 .
 22. Show that the group homomorphism $\varphi: G \to G'$ is one-to-one map iff $Ker(\varphi) = \{e\}$.

23. Find all cosets of the subgroup < 4 > of \mathbb{Z}_{12}

24. Define units in a ring R. Describe all units in the ring $\mathbb{Z} \times \mathbb{Z}_2$

25. Solve the equation 3x = 2 in the field \mathbb{Z}_{23} .

26. Define field of quotient of an integral domain. Give one example.

 $(10\times4=40 \text{ marks})$

Cis

nts on

Jarks)

Section C Answer any six out of nine questions Each question carries 7 Marks

- 27. Let $(a * b)^2 = a^2 * b^2$ for a and b in a group a. Show that a * b = b * a
- 28. Prove that a cyclic group with only one generator can have at most two elements.
- 29. Let H and K are subgroups of a group G. Show that $H \cap K$ is also a subgroup of G.
- 30. Let $G \cong G'$ and G is abelian. Show that G' is also abelian.
- 31. Show that every group is isomorphic to a group of permutations.
- 32. Let *H* is a subgroup of *G* and let $x \in G$. Show that $xHx^{-1} = \{xhx^{-1} : h \in H\}$ is a subgroup of *G*.
- 33. In a ring (R, +, .). Prove the following:
 - a) $a \cdot 0 = 0 = 0 \cdot a$ for all $a \in R$
 - b) $a \cdot (-b) = (-a) \cdot b = -(a \cdot b)$ for all $a, b \in R$
- 34. Define zero divisors in a ring (R, +, .). Find all zero divisors in the ring $(\mathbb{Z}_6, +_6, \times_6)$
- 35. Show that every finite integral domain is a field.

 $(6 \times 7 = 42 \text{ marks})$

Section D Answer any two out of three questions Each question carries 13 Marks

- 36. Let G be cyclic group with generator a. Prove the following
 - a) If G has infinite order, then $G \cong \mathbb{Z}$
 - b) If G has finite order n, then $G \cong \mathbb{Z}_n$
- 37. Show that subgroup of a cyclic group is always cyclic. Describe all cyclic subgroups o the group $(\mathbb{Z}_{12}, +_{12})$
- 38. Show that every field is an integral domain. Is $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$ a field Justify your answer.

 $(2\times13=26 \text{ marks})$

5N18302		

(Pages: 2)

Dog	No.			
Reg.	140	 	 	 • • •

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fifth Semester B.Sc Mathematics Degree Examination, November 2018 MAT5B07 - Basic Mathematical Analysis

(2015 Admission onwards)

Max. Time: 3 hours

Max. Marks: 120

Section A Answer all the twelve questions Each question carries 1 mark

- Define supremum of a set.
- The symmetric difference $A \oplus B = ----$
- Give an example of a bounded sequence which is not Cauchy.
- If (x_n) is a bounded decreasing sequence, then $\lim_{n \to \infty} (x_n) = ----$.
- 5. State Archimedean property of real numbers.
- 6. What is the set of all cluster points of the set (3, 4).
- 7. If 0 < x < 1, then $\lim_{n \to \infty} (x^n) = ----$
- 8. Define a contractive sequence.
- 9. Find Arg (z), if z = -1 + i
- 10. Represent 1 i in polar form.
- 11. Identify the region |z-1| = 4.
- 12. Find the imaginary part of $\frac{5-2i}{4+i}$.

(12x1 = 12 marks)

Section B

Answer any ten questions out of fourteen questions Each question carries 4 marks

- 13. Show that the set $N \times N$ is denumerable.
- 14. If $a \ge 0$ and $b \ge 0$, prove that a < b if and only if $a^2 < b^2$.
- 15. Show that any nonempty finite subset of R contains its supremum.
- 16. Determine the set of all x satisfying |x + 1| + |x| = 7.
- 17. State and prove arithmetic-geometric inequality.
- 18. Prove that $5^n 4n 1$ is divisible by 16 for all $n \in \mathbb{N}$.
- 19. Using the definition of limit, prove that $\lim \frac{3n+1}{5n-2} = \frac{3}{5}$.
- 20. Show that subsequences of a convergent sequence are convergent.
- 21. Prove by an example that sum of two divergent sequences need not be divergent.
- 22. Define ultimate property of a sequence. Give example of an ultimately monotone sequence.
- 23. Is the union of any collection of closed sets is closed? Justify your answer.
- 24. Discuss the convergence of the sequence (n!/nⁿ)
- 25. Prove that $\sqrt{2} |z| \ge |Re z| + |Im z|$.
- 26. Find the two square roots of $\sqrt{3} + i$.

Section C Answer any six questions out of nine questions Each question carries 7 marks

- 27. State and prove nested interval property of real numbers.
- 28. Show that the set of real numbers R is not countable.
- 29. State and prove density theorem of real numbers.
- 30. Test the convergence of the sequences (i) $\left(\frac{n}{3^n}\right)$ (ii) $\left(\frac{\sqrt{n^2+2}}{\sqrt{n}}\right)$
- 31. State and prove squeeze theorem and use it to prove that $(\frac{\sin n}{n^2})$ is convergent.
- 32. Let $x_1 = 1$ and $x_{n+1} = \sqrt{2 + x_n}$ for $n \in \mathbb{N}$. Show that x_n converges and find its limit.
- 33. Define Cantor set. Show that Cantor set contains uncountable number of points.
- 34. Find all 7th roots of unity and exhibit them geometrically.
- 35. Prove that $|z_1 + z_2| \le |z_1| + |z_2|$.

 $(6 \times 7 = 42)$

Section D Answer any two questions out of three questions Each question carries 13 marks

- 36. (a) State and prove the Cauchy's convergence Criterion for sequences.
 - (b) Apply Cauchy's convergence Criterion to show that the sequence (a_n) , where $a_n = 1 + 1/2 + 1/3 + \dots + 1/n$ is not convergent.
- 37. Prove that a subset of R is open if and only if it is the union of countably many disjoir open intervals in R.
- 38. Sketch the following regions. In each case state whether they are open or closed, which them are connected and which of them are bounded.

(i)
$$|z+1| + |z-1| < 4$$
 (ii) Re $z^2 \le 2$ (iii) $|3z+2| > 4$ (iv) $|z-i| > |z-1|$

 $(2 \times 13 = 2)$

5N18303	(Pages: 2)	Reg. No:
		Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fifth Semester B.Sc Mathematics Degree Examination, November 2018 MAT5B08 – Differential Equations

(2015 Admission onwards)

lax. Time: 3 hours

Max. Marks: 120

Section A

Answer all the twelve questions Each question carries 1 mark

- 1. State whether the differential equation $(1+y^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = e^x$ is linear or nonlinear in the variable y.
- 2. Find the integrating factor of the differential equation $x \frac{dy}{dx} + y = \tan x$
- 3. Write the standard form of a second order linear non-homogenous differential equation.
- 4. Define the wroskian of the two functions f(t) and g(t).
- 5. What is the period of the function $f(x) = \sin(2x)$?
- 6. Write the one dimensional heat conduction equation.
- 7. What is the Laplace transformation of the function f(t)=5t-3?
- 8. Define the convolution of two functions f(t) and g(t).
- 9. True or False: If the function f(x) is even, then its reciprocal function is also even.
- 10. Define impulse function.
- 11. Check whether the function $f(x) = x^2 + \cos(x)$ is even or odd.
- 12. Find the eigen values of the matrix $A = \begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix}$

 $(12 \times 1 = 12 \text{ Marks})$

Section B Answer any TEN questions Each question carries 4 marks

- 13. Solve the differential equation $\frac{dy}{dx} y = 0$.
- 14. Check the exactness of the differential equation $(y \cos x + 2xe^y) + (\sin x + x^2 e^y 1)\frac{dy}{dx} = 0$.
- 15. State some differences between linear and non-linear differential equations.
- 16. Solve the initial value problem y'' y = 0, y(0) = 2, y'(0) = -1
- 17. Find the wroskian of the functions e^x and xe^x .
- 18. Use the method of reduction of order to find a second a solution $y_2(x)$ of the differential equation x^2 y''-xy'+y = 0 if one solution is given by $y_1(x) = x$.
- 19. Find the Laplace transformation of the function $f(t) = sin^2(t)$.
- 20. Define the unit step function u_c (t) and find its Laplace transform.
- 21. Find the convolution of the functions e^t and e^{-t} .
- 22. Find the inverse Laplace transformation of $\frac{s-4}{s^2-4}$.
- 23. Find the eigen values of the matrix $A = \begin{bmatrix} 5 & -1 \\ 3 & 1 \end{bmatrix}$.
- 24. Write the Euler-Fourier formulas to find the Fourier coefficients a_0 , a_n and b_n in the Fourier series expansion of a function having period 2L.
- 25. Show that the product of two odd functions is an even function.
- 26. Show that Laplace transformation is a linear operator.

 $(10 \times 4 = 40 \text{ Marks})$

narks)

n of

marks

Section C Answer any SIX questions Each question carries SEVEN marks.

- 27. Solve by the method of variation of parameters $y''-4y'+4y=\frac{e^{2x}}{x}$.
- 28. Solve the non-homogenous equation $y'' + 4y = 8x^2$ by the method of undetermin coefficients.
- 29. Use Euler's method with h=0.1 to find approximate values of the solution of the differential equation $\frac{dy}{dt} = \frac{3t^2}{3y^2 4}$ at t=1.2, 1.4, 1.6 and 1.8
- 30. Show that the differential equation $(2xy + y \tan y) dx + (x^2 x \tan^2 y + \sec^2 x)$ is exact and hence solve it.
- 31. Solve the initial value problem y''-2y'+10y=0, y(0)=4, y'(0)=1.
- 32. Show that the convolution of two functions is commutative.
- 33. Solve the integral equation $y(t) = t + \int_0^t y(u) \sin(t u) du$
- 34. Solve by the method of separation of variables $\frac{\partial u}{\partial x} = 2\frac{\partial u}{\partial t} + u$.
- 35. Find the Fourier Series for f(x)=|x| in $[-\pi,\pi]$.

 $(6 \times 7 = 42)$

Section D

Answer any TWO questions Each question carries 13 marks.

- 36. Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix}$.
- 37. Using Laplace transformation solve $y'' + y = 3\cos(2t)$, y(0) = 0, y'(0) = 0.
- 38. Find the Fourier series expansion of $f(x) = \begin{cases} -k, -\pi < x < 0 \\ k, 0 < x < \pi \end{cases}$, $f(x+2\pi) = f(x+2\pi)$.

 Hence deduce that $1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \dots = \frac{\pi}{4}$.

 $(2 \times 13 = 2)$

B5N18304

(Pages: 2)

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fifth Semester B.Sc Mathematics Open Course Degree Examination, November 2018

MAT5D03 – Mathematics for Social Science

(2015 Admission onwards)

Max. Time: 2 hours

Max. Marks: 40

7 + 2)d

Marks)

c).

5 Marks

ed

Section A

Answer all the six questions

Each question carries 1 mark

- 1. Complete the square of the expression $x^2 5x$.
- 2. Find the y intercept and x intercept for the equation y = -4x + 8.
- 3. Given $f(x) = x^2 + 6x + 8$, find f(a) and f(a + 3).
- 4. Define an Inflection point.
- 5. Solve $\log_5 x = 3$.
- 6. Evaluate $\int_4^{36} \frac{dx}{\sqrt{x}}$

 $(6 \times 1 = 6 \text{ marks})$

Section B

Answer any five out of seven questions Each question carries 2 marks.

- 7. Find the first- order partial derivative for $f(x, y) = \frac{x^2 + y^2}{5x + 2y}$
- 8. Use integration by substitution to evaluate $\int \frac{56x}{(7x^2+4)^3} dx$.
- 9. Find the critical value and determine whether the critical value is relative maximum or minimum for $f(x) = 2x^3 24x^2 + 72x 15$.
- 10. Solve the system of equations y = -2x + 10; $y = \frac{1}{4}x + 1$ graphically.
- 11. Evaluate $\lim_{x\to 3} \frac{\sqrt{x}-\sqrt{3}}{x-3}$.
- 12. If the total cost function $C(x) = 0.5 x^2 + 1.5x + 8$, find the marginal cost at x = 4.
- 13. Find the successive derivatives for the function $y = (5x 9)^3$.

 $(5 \times 2 = 10 \text{ marks})$

Section C three out of five questio

Answer any three out of five questions Each question carries 4 marks.

14. Use logarithmic differentiation to find the derivative of

 $g(x) = (x^4 + 7)(x^5 + 6)(x^3 + 2).$

- 15. Find the vertex and axis of the parabola $y = x^2 8x + 19$ and then draw the parabola.
- 16. Find the volume V of the solid of revolution generated by revolving around the x the regions of the curve $f(x) = 5x^2$; a = 1, b = 3.
- 17. Find the cross partial derivatives of $z = e^{x^2y^3}$.
- 18. Find the break-even for a firm operating on monopolistic competition, given that revenue is $R = 48x x^2$ and total cost is TC = 6x + 120.

 $(3 \times 4 = 12 \text{ m})$

Section D y two out of three questions

Answer any two out of three questions Each question carries 6 marks.

- 19. Given the total revenue function R from the sale of x units, R(x) = 150x 3x + 2,
 - (a) The average revenue (AR) of sales between x = 15 and x = 20.
 - (b) The AR of sales for a small increase of sales starting at x = 15.
 - (c) The marginal cost (MR) at x = 15
 - 20. Find the level of output at which profit π is maximized, given that the total revenue $R = 6400Q 20Q^2$ and total cost $C = Q^3 5Q^2 + 400Q + 52,000$ assume Q > 0.
 - 21. Find the equation for the line passing through (-2, 5) and parallel to the line have the equation y = 3x + 7.

 $(2 \times 6 = 12 \text{ n})$