22	MII	001	6
15 /	IVI I	801	v

(Pages:2)

Reg. N	0:.	٠.									*		
Name:		SUP											

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester B.Sc Chemistry Degree Examination, March 2018 BCHE2B02 – Theoretical and Inorganic Chemistry – II

(2017 Admission onwards)

Max. Time: 3 hours

Max. Marks: 80

Section A (One word) Answer all questions. Each question carries 1 mark.

A homonuclear diatomic molecule with bond order 3 is	Z::
Which has the highest bond order CO or NO?	
How many radial nodes does the 4p orbital have?	
∇^2 is called theoperator.	
value of lattice energy of a crystal favours the formation of ionic b	ond.
A wave function ψ satisfying the condition $\int \psi \psi * d\tau = 1$ is said to be	
The points of zero probability for the wave function is called	
The effect that results in a decrease in the force of attraction of the nucleu	is for an
electron, caused by the presence of intervening electrons, is called	
Which has lower electron affinity -lithium or beryllium?	*
Among O ₂ , O ₂ and O ₂ ² , the diamagnetic species is	

Section B (Short Answer)

Answer any ten questions. Each question carries 2 marks.

- 11. Define eigen value and eigen function.
- 12. Give the Born-Lande equation and explain the terms.
- 13. Mention two differences between a sigma bond and a pi bond.
- 14. What is the state of hybridisation of N in NH₄⁺ molecule and what is the H-N-H bond angle in the ion?
- 15. How does ionization enthalpy vary along a period? Explain.
- 16. What are the conditions for effective linear combination between atomic orbitals?
 Explain
- 17. Explain the term diagonal relationship.
- 18. Give reason for the equal bond lengths in the case of carbonate and borate anions.
- 19. An electron is in 4*f* orbital. What possible values of quantum numbers *n*, *l*, *m* and *s* can it have?
- 20. Fe^{2+} ion is less stable than Fe^{3+} ion. Why?
- 21. Write the Schrodinger wave equation. Explain the Hamiltonian operator.
- 22. Which has higher boiling point o-nitrophenol or p-nitrophenol? Why?

 $(10 \times 2 = 20 \text{ Marks})$

 $(10 \times 1 = 10 \text{ Marks})$

Section C (raragraph)

Answer any five questions. Each question carries 6 marks.

- 23. The dipole moment of LiH is 1.964 x 10⁻²⁹ Cm, and the interatomic distance between Li and H in this molecule is 1.596Å. What is the percent ionic character in LiH?
- 24. Explain the following intermolecular forces: (i) Keesom forces; (ii) Debye forces; (iii) London forces.
- 25. What is hybridisation? sp^3d hybridisation does not give fully equivalent orbitals. Explain.
- 26. State and explain the postulates of quantum mechanics.
- 27. Explain with examples, the applications of dipole moment measurement in structural elucidation of molecules.
- 28. Explain the Born-Haber cycle with respect to NaCl.
- 29. Write the MO configuration of NO molecule. Calculate its bond order and predict its magnetic property.
- 30. Distinguish between the terms electronegativity and electron affinity. Explain the variation of electronegativity along a period and down a group.

 $(5 \times 6 = 30 \text{ Marks})$

Section D (Essay) Answer any two questions. Each question carries 10 marks.

- 31. Write down the Schrodinger wave equation for a particle in a one dimensional box, solve it and get expression for the energy of electron. Explain the term zero point energy.
- 32. (i) State the Slater's rules for calculating effective nuclear charge.
 - (ii) Calculate the effective nuclear charge experienced by 3d electron of Cr. (Z = 24)
- 33. Discuss the hydrogen bonding. Taking suitable examples explain how it effect the physical properties of compounds.
- 34. (i) State the important postulates of VSEPR.
 - (ii) Apply the theory to predict the shape of ClF₃, SF₄ and XeF₄.

 $(2 \times 10 = 20 \text{ Marks})$

B2M18017

(Pages	2)	١
(1 ages	-	,

Reg.	No	:	•	٠.	•	•	•		•			•	•	•			•			•
NI																				

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester B.Sc Chemistry Degree Examination, March 2018 BCHE2C02 – Physical Chemistry

(2017 Admission onwards)

Max. Time: 3 hours

Max. Marks: 64

Section A(One word) Answer all questions. Each question carries 1 mark

- An isobaric process is one in which the ------of the system is kept constant.
- The SI unit of entropy change is -----
- For an ideal gas the compressibility factor is equal to ----
- The most probable velocity of a gas ----with increase in temperature.
- 5. ----defect is observed in ionic compound with cations and anions of comparable size.
- For a cubic Bravais lattice maximum number of atoms per unit cell is ----
- 7. Which colligative property is useful for the determination of molecular mass of proteins?
- 8. Liquids with high intermolecular forces have ----viscosity.
- 9. The pH of acid solution in standard hydrogen electrode is ----.
- 10. The conductance of a conductor of unit length and unit area of cross section is called ----

(10x1=10 Marks)

Section B (Short answer) Answer any seven questions. Each question carries 2 marks

- 11. Distinguish between intensive properties and extensive properties?
- 12. Define entropy of fusion? How is it related to enthalpy of fusion?
- 13. Calculate the average velocity of nitrogen molecule at 25°C?
- 14. Define Boyle temperature?
- 15. State and explain Henry's law?
- 16. Define surface tension?
- 17. Explain reverse osmosis?
- 18. Differentiate between equivalent conductance and molar conductance.
- 19. Write a note on calomel electrode?
- 20. Define ionic product of water?

(7x 2=14 Marks)

Section C (Paragraph) Answer any four questions. Each question carries 5 marks

- 21. Explain physical significance of Gibb's free energy?
- 22. Write short note on Schottky and Frenkel defects.
- Discuss the Maxwell's distribution of molecular velocities and the effect of temperature in the distribution.
- 24. Derive the Van't Hoff equation for osmotic pressure
- 25. Explain the construction and working of H₂-O₂ fuel cell?
- 26. What is buffer solution? What are different types of buffer? Explain buffer action?

(4 x 5=20 Mark

Section D(Essay) Answer any two questions. Each question carries 10 marks

- (a) Discuss the entropy criteria for reversible and irreversible processes.
 (b) The heat of reaction at constant pressure for the reaction
 CH₄(g) +2O₂(g) → CO₂(g) +2H₂O(l) is -93.45KJ. Calculate the heat of reaction at constant volume.
- 28. Explain the classification of liquid crystals based on the structure
- 29. Define vapour pressure? Explain the effect of temperature and intermolecular forces on the vapour pressure of liquids.
- 30. Discuss the application of conductance measurement in conductometric titrations.

(2 x 10=20 Mark